Earthquake Analysis of Arch Dams

Anil K. Chopra

Electricity Generating Authority of Thailand Bangkok, Thailand December 7-8, 2010 Earthquake Analysis of Arch Dams: Factors To Be Considered

Focus on linear analysis

 Before embarking on nonlinear analysis for any project, the "best possible" linear analysis should be implemented

Comment on nonlinear analysis

Complex System Geometry

- Three-dimensional system
- Reservoir: unbounded in the upstream direction
- Foundation: semiunbounded domain

Dynamic Analysis Should Consider:

- Dam-water interaction
- Reservoir boundary absorption
- Water compressibility
- Dam-foundation rock interaction
- Spatial variations in ground motion

Early Research at Berkeley

- Six Ph.D. theses at U.C. Berkeley (1972-96)
- Substructure method for linear systems
- Frequency domain method
- Implemented in computer programs distributed by NISEE
 - EAGD-84: Gravity Dams, 1984
 - EACD-3D-96: Arch Dams, 1996

EACD-3D-96 Computer Program Considers

- 3D semi-unbounded geometry
- Dam-water interaction
 - Reservoir-boundary absorption
 - Water compressibility
- Dam-foundation rock interaction
 - Foundation flexibility, inertia, and damping (material and radiation)

3D ANALYSIS OF DAM-WATER-FOUNDATION ROCK SYSTEM

Arch Dam-Water Foundation Rock System

EACD-3D-2008 Model

(b) Finite element model: Fluid Domain

(c) Boundary element mesh: dam-foundation rock interface

Foundation Dynamic Stiffness Matrix, $S_f(\omega)$

- Foundation idealization
- Canyon cut in a viscoelastic half-space
- Infinitely long canyon
- Arbitrary but uniform cross-section of canyon

Infinitely Long Canyon Arbitrary but Uniform Cross Section

Computation of Foundation Dynamic Stiffness Matrix, $S_f(\omega)$

Direct boundary element procedure

- Full-space Green's function
- 3D boundary integral equation
- Analytical integration along canyon axis
- Infinite series of 2D problems
- Each 2D problem for one wave number
- Superpose solution of 2D problems

Foundation Dynamic Stiffness Matrix, $S_f(\omega)$

 Defined for DOFs in finite element idealization of dam at dam-foundation interface, Γ_I

 $S_f(\omega)\hat{r}(\omega) = \hat{R}(\omega)$

 ω = excitation frequency R(t) = interaction forces r(t) = interaction displacements Earthquake Analysis of Dams: Computer Programs

- EAGD-84 and EACD-3D-96 include all factors
- Developed before desktop computers
- Developed by graduate students
- Primarily research programs
- Applied to several actual projects

Practical Applications of EACD-3D-96

Seismic safety evaluation of

- Englebright Dam, California, USA
- Valdecanas Dam, Spain
- Pardee Dam, California, USA
- Deadwood Dam, Idaho, USA
- Morrow Point Dam, Colorado, USA
- Monticello Dam, California, USA
- Hoover Dam, Nevada/Arizona, USA

EACD-3D-96 Computer Program Considers

- 3D semi-unbounded geometry
- Dam-water interaction
 - Reservoir-boundary absorption
 - Water compressibility
- Dam-foundation rock interaction
 - Foundation flexibility, inertia, and damping (material and radiation)

Popular Finite Element Techniques for Dams

- Ignore dam-water interaction and water compressibility
- Ignore wave absorption by sediments at reservoir boundary
- Assume foundation rock to be massless, i.e., consider only foundation rock flexibility

BUREAU OF RECLAMATION PROGRAM TO EVALUATE EXISTING DAMS

Bureau of Reclamation Program to Evaluate Existing Dams

- Major program, started in 1996
- Twelve dams were investigated, including:
 - Hoover dam (221 meter-high curved gravity dam)

Hoover Dam 221-meter high, curved gravity dam

Evaluation of Hoover Dam

- Stresses computed by state-of-the-art finite element analysis
- Dam will crack through the thickness
- Did not seem credible to Reclamation engineers

Hoover Dam 221-meter high, curved gravity dam

Hoover Dam: Cross Section

SECTION ON LINE OF CENTERS

Bureau of Reclamation Program (1996-

- Found it necessary to consider:
 - Dam-foundation rock interaction
 - Dam-water interaction
 - Water compressibility
 - Reservoir boundary absorption
- Started using EACD-3D-96 computer program for linear analysis
- LS-DYNA for nonlinear analysis
- Realistic models based on field tests

Reclamation Program To Evaluate Existing Dams

- Deadwood Dam, 50-meters high, single curvature
- Monticello Dam, 93-meters high, single cuvature
- Morrow Point Dam, 142-meters high, double curvature
- Hoover Dam, 221-meters high, thick arch
- Other dams

Deadwood Dam 50-meter high, single curvature dam

Monticello Dam 93-meter high, single curvature dam

Morrow Point Dam 142-meter high, double curvature dam

Hoover Dam 221-meter high, curved gravity dam

Dam-foundation interaction

Massless foundation rock (flexibility only)

Dam-foundation interaction

Massless foundation rock (flexibility only)

Dam-foundation interaction

Massless foundation rock (flexibility only)

Morrow Point Dam

Dam-foundation interaction

Massless foundation rock (flexibility only)

Neglecting Foundation Rock Inertia and Damping

- Stresses are overestimated by a factor of 2 to 3
- Such overestimation may lead to
 - Overconservative designs of new dams
 - Erroneous conclusion that an existing dam requires remediation.
- Analysis must include dam-foundation rock interaction
- Ignored in most practical analyses—only rock flexibility is considered

Water compressibility considered

Water compressibility neglected

Water compressibility considered

Water compressibility neglected

Neglecting Water Compressibility

- Stresses may be significantly
 - Underestimated (e.g., Monticello Dam)
 - Overestimated (e.g., Morrow Point Dam)
- Must include water compressibility
- Ignored in most practical analyses hydrodynamic effects approximated by added mass of water

COMPUTED VERSUS RECORDED RESPONSES

Comparison of Computed and Recorded Responses

- Large disparity in results depending on numerical model used
- Important to calibrate numerical models against motions of dams recorded during:
 - Forced vibration tests
 - Earthquakes

Forced Vibration Tests: Morrow Point Dam

Bureau of Reclamation concluded:

- Massless foundation rock model far from matching measured response
- Including dam-foundation rock interaction (EACD-3D-96 model) reasonably matched measured response

Mauvoisin Dam, Switzerland 250 meters high

Mauvoisin Dam, Switzerland Location of Recorders

Recorded Motions at Mauvoisin Dam Stream Direction

1996 Valpelline earthquake: Magnitude 4.6, 12 km away

- Finite element model properties calibrated against ambient vibration test data
- Using measured 2-3% damping, response was overestimated
- 8% damping provided better match
- 15% damping required in model for Emosson Dam

Using measured 3% damping, response was overestimated

EGAT, Thailand

8% damping provided better match

How to justify 8% damping in model when measured value is 2-3%? EGAT, Thailand

- Finite element model properties calibrated against ambient vibration test data
- Using measured 2-3% damping, response was overestimated
- 8% damping provided better match
- 15% damping required in model for Emosson Dam

EACD-3D 2008 Model

(b) Finite element model: Fluid Domain

(c) Boundary element mesh: dam-foundation rock interface

Selection of Damping Based on Frequency Response Functions

Damping: Dam 1%; Rock 3% ⇒ 2% in overall system

Cross-Stream Response

Improved Agreement between Computed and Recorded Response When Foundation Inertia and Damping Included

Damping: Dam 1%; Rock 3% ⇒ 2% in overall system

Improved Agreement between Computed and Recorded Response When Foundation Inertia and Damping Included

Damping: Dam 1%; Rock 3% ⇒ 2% in overall system

Improved Agreement between Computed and Recorded Response When Foundation Inertia and Damping Included

Pacoima Dam, California, USA 113 meters high

Instrumentation at Pacoima Dam

CDMG Sensor Locations

Recorded Motions at Pacoima Dam 2001 Earthquake, Stream Direction

EACD-3D-2008 Model

(b) Finite element model: reservoir

(c) Boundary element mesh: dam-foundation rock interface

Selection of Damping Based on Frequency Response Functions

Damping: Dam 2%; Rock 4% ⇒ 6.2-6.6% in overall system

Comparison of Computed and Recorded Displacements Pacoima Dam, 2001 Earthquake

SPATIAL VARIATIONS IN GROUND MOTION

Extended Analysis Procedure 2007-2008

- Spatial variations in ground motion
- Dam-water interaction
- Reservoir boundary absorption
- Water compressibility
- Dam-foundation rock interaction
- EACD-3D-2008 computer program

Significance of Spatial Variations in Ground Motion

Structural response split in two parts:

- Quasi-static component: due to static application of interface displacements at each time instant
- Dynamic component
- Key factor is significance of quasi-static component
- Depends on degree to which ground motion varies spatially

Mauvoisin Dam: Spatial Variations in Interface Motions Are Small

Quasi-Static Component Is Only a Small Part of Mauvoisin Dam Response

Arch stressses on upstream face in kPa

Spatially-Varying Excitation

Pacoima Dam: Spatial Variations in Interface Motions Are Large Northridge Earthquake, 1994

Missing segments estimated by Alves & Hall (2004)

Quasi-Static Component Dominates Pacoima Dam Response

Spatial Variations in Ground Motion Major Influence on Stresses in Pacoima Dam during 1994 Earthquake

Arch stressses on upstream face in MPa

Spatially-Uniform: Base

Spatially-Varying Excitation

Pacoima Dam, California, USA 113 meters high

Pacoima Dam, Cracking Visible

Applications to Evaluation and Remediation of Existing Dams

Seismic Evaluation of Existing Dams

- Geological and seismological investigations
 - Probabilistic seismic hazard analysis
 - Uniform Hazard Spectrum
- Ground motion selection and scaling
- Dynamic analysis
- Concrete testing: tensile strength
- Performance evaluation
- Remediation strategies

50-meter high, single curvature dam

Seismic Upgrading of Deadwood Dam

- EACD-3D-96 analysis including dam-waterfoundation interaction (2001)
- Compute forces transmitted to foundation
- Stabilize 3 unstable foundation blocks
- 60 rock bolts
- Cost: US \$1.0 M
- Higher cost if analyses assumed massless foundation rock

Stewart Mountain Dam

207 ft

63 m

8 feet

2.4 m

33 feet

10 m

Problems: Concrete placed very wet - Segregated concrete No lift line cleanup - Unbonded lift lines (16 of 23 unbonded) Alkali-aggregate reaction -Crest expanded 6-inches (15 cm) upstream Earthquake shaking - Generates 2.6 g at dam crest

- Concrete blocks move upstream

Seismic Upgrading of Stewart Mountain Dam

62 post-tensioned anchors 10-ft spacing

Dam passes flood

Seismic Upgrading of Stewart Mountain Dam

- Earthquake analyses assumed massless foundation rock (1994)
- 62 post-tensioned anchors @10 ft
- Cost: US \$6.8 M
- Lower cost if analyses included damwater-foundation rock interaction

Pardee Dam, California

Englebright Dam, California

East Canyon Dam, Utah

Valdecanas Dam, Spain

Dynamic Analysis Should Consider:

- Dam-water interaction
- Reservoir boundary absorption
- Water compressibility
- Dam-foundation rock interaction
- Spatial variations in ground motion

Slow Adoption in Engineering Practice

- Most analytical advances to include dam-waterfoundation rock interaction were reported
 - Over 20 years ago for gravity dams
 - Over 10 years ago for arch dams
- 2007-2008: Extended to include spatial variations in ground motion
- EACD-3D-2008 computer program for linear analysis
- User-friendly software is needed

Dynamic Analysis Should Consider:

- Dam-water interaction
- Reservoir boundary absorption
- Water compressibility
- Dam-foundation rock interaction

Nonlinear Analysis of Dams

If radiation boundary is simple, large FE model is necessary to simulate semiunbounded domains and dam-waterfoundation rock interaction.

Bureau of Reclamation

LS-DYNA Finite Element Model

Bureau of Reclamation

Nonlinear Analysis of Dams

Recently developed PML boundary drastically reduces size of model, now implemented in LS-DYNA

