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ABSTRACT : The relationship between coefficient of lateral earth pressure at rest K, and friction angle proposed by
Jaky (1948) is the most widely-used formula to estimate at-rest pressure in geotechnical engineering practice. This
formula is not an empirical formula but a simplified analytical formula based on continuum mechanics. The ratio
between lateral to vertical pressures at the symmetrical line of wedge-shaped granular mound reposed at angle of
friction in loose state where elastic region is sandwiched by plastic region, is considered to be K,. Though Jaky’s K,
formulation is not well-known, the analytical method was proved to be theoretically acceptable. Still, there is an
inconsistency on pressure distribution profile. It has been found that Jaky’s assumption is not related to a physical at-
rest condition but the result of rotation of principal stress axis from plastic crust to symmetrical line in elastic core. The
purpose of this research is basically to review and generalize the formulations of K, based on Jaky’s hypothesis (1944).
Hypothesis of quadratic and higher non-linear shear reduction resulted in unrealistic stress distributions, confirming the
conclusion made by the earlier researches that Jaky’s K, equation is a coincidental finding. The relative width of elastic
region limited in Jaky’s assumption was examined. Linear shear reduction with an adjustable relative width of elastic
core can improve the analyzed results. The comparison with experimental measurements demonstrated that lateral earth
pressures in the mid-plane of granular mound could be estimated by K,. Also, the relative width of elastic core could be
regarded as arching condition and coefficients of lateral earth pressure are the results of arching effects.

KEYWORDS : Coefficient of lateral earth pressure at rest, Mohr-Coulomb failure criterion, Arching effect, Plasticity
theory, Stockpiles.

1. INTRODUCTION

Analyses of geotechnical engineering problems often
require the initial state of stresses in soil mass. For the
general state of stresses where the vertical and lateral
effective stresses become principal stress acting on
principal planes, the coefficient of earth pressure at rest,
K, is frequently used to describe in-situ lateral earth
pressure. K, value is defined as a ratio of horizontal to
vertical effective stresses restricted to the particular
condition of zero lateral strains., Eq.(1) is the analytical
relationship between K, and the angle of shearing
resistance ¢ derived by Jaky (1944). This equation is not
an empirical formula but a theoretical solution based on
continuum mechanics. Jaky (1948) later simplified to the
semi-empirical relationship as shown in Eq.(2). K, shown
in Eq.(1) gives value about 90% of Eq.(2) over a range of
¢ between 10° to 40°. Due to this small difference, Eq.(2)
become more familiar afterwards.

_ 2. l—sinq}z o
K, —(1+ 3sm¢j1+sin¢ 0.9(1—sing) €))
K, =1-sing 2

Jaky (1944) formulated K, equation from a stress
analysis in a long wedge-shaped granular heap inclined at
a reposed angle ¢ in loose state as shown in Fig. 1. The

ratio between lateral to vertical pressures at the
symmetrical line of the mound whose elastic region is
sandwiched by plastic region is considered to be K,. In-
plane purely frictional Coulomb material with fixed slip
planes was assumed in plastic region while the shear
stress distribution was supposedly reduced to zero at the
center in elastic region.
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Figure 1 Wedge-shaped granular mound formed by the angle
of repose ¢ with horizontal. The vertical z-axis is me-asured
vertically downwards from the apex of the mo-und and the
horizontal x-axis is measured horizontally outwards.

Though Jaky’s K, formulation is not well-known due
to the disadvantage to publishing in Hungarian in 1944,
Jaky’s assumption and analytical method was critically
reviewed by Tschebetarioff (1951), Mesri & Hayat
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(1993) and Michalowski (2004, 2005). It was found that
the analysis is not associated with one-dimensional strain
state but the result of principal stress orientation
regulated by the particularly assumed shear stress
distribution in granular mound. This assumption does not
correspond to K, physical condition where horizontal
boundary of soil mass is infinite. Therefore, Jaky’s K,
equation should be exclusively applied to the center line
of symmetrical embankments with slope forming the
angle of repose with the ground surface. Nevertheless,
Jaky’s K, equation is extensively used in practice because
the relationship with internal friction angle happens to fit
with laboratory measurements for normally consolidated
clays and loose granular soils. Michalowski (2005)
pointed out that Jaky’s analytical method is theoretically
acceptable. But stress field across the width of the mound
given by Jaky’s analysis was found unrealistic when
comparing to the experiments on sand piles (Vanel et al.,
1999). This verification leads to the conclusion that
Jaky’s derivation of K, is a coincidental findings.

It is noted that local constitutive equations are
dependent on boundary conditions of the specific
problem, thus cannot regarded as a constitutive model of
materials. In fact, the local constitutive model based on
hypothesis similar to Jaky (1944) was used to explain the
marvelous phenomenon of central pressure dip
underneath the granular mound. Wittmer et al. (1996,
1997), Cantelaube & Goddard (1997), Cates et al. (1998)
and Didwania (2000) also analyzed stress distribution in
wedge-shaped granular mound by separating the
continuum into elastic and plastic regions. All stress
components satisfying the stress equilibrium were
continuous across this boundary. The analytical solutions
(see Fig.4) reveal the vertical normal stress at the center
can exhibit a dip, a peak and a flat by varying the
adjustable parameter which is the relative slope of elastic
core. The closure remarked that the pressure dip is caused
by arching action over elastic core of the heap however
arching criterion is still doubted and therefore have not
been addressed.

The purpose of this research is basically to review the
formulations of K, based on Jaky’s hypothesis.
Comparison with fixed principal axis and linear shear
reduction models is made. Jaky’s model is generalized
from linear to higher degree of non-linearity in an attempt
to confirm the conclusion made by Michalowski (2005)
that Jaky’s derivation of K, is a coincidental result. The
limitation of Jaky’s hypothesis is discussed and extended.
Since the coefficient of lateral earth pressure along the
center of the mound can be associated with the relative
width of elastic core, the probable linkage of K, with
arching action is explored and validated with
experimental measurements. This comprehensive study is
expected to be useful for academics by providing initial

stress distribution to the analyses of stockpiles and slopes.

2. IDEALIZED GRANULAR WEDGE

The basic theoretical background of Jaky’s stress analysis
is introduced. In Fig.1, The vertical z-axis is measured
vertically downwards from the apex of the mound and the

horizontal x-axis is measured horizontally outwards. The
symmetrical heap is stabilized by frictional resistance and
vertical support of the stiff base with rough surface. The
granular wedge is assumed to be a cohesionless material
with a constant bulk unit weight y. The slope OA is
inclined at the reposed angle ¢ with horizontal AC. The
angle of repose is known as the angle of the maximum
slope of the free surface to the horizontal plane. For
cohesionless material, the angle of repose is equivalent to
the angle of shearing resistance which is independent of
the height of the slope surface. Half-width of the
continuum of the mound is considered and divided into
plastic and elastic regions by the plane OB inclined at 6
to the horizontal. The outer region of plastic crust AOB is
placed above the inner region of elastic core BOC. Plastic
crust is composed of layers of finite thickness with slip
planes oriented at ¢ and at n/2 to horizontal. Therefore,
the stress states in region AOB are assumed fully
mobilized with fixed direction of the principal stresses.
The central core is symmetry along the mid-plane OC
which is assumed as the plane of at-rest condition with
the direction of major principal stress normal to the
horizontal base. Therefore, the stress state in region BOC
is assumed elastic with rotating directions of the principal
stresses from the elastic-plastic boundary at plane OB to
the center line at plane OC. It is required that stress
components of plastic and elastic boundary along the
plane OB must be connected to maintain the stress
continuity. At the slope surface AO, bulk materials are
essentially in zero stress state. Moreover, at the mid-
plane OC, shear stress must be zero due to the symmetry
and absence of frictional horizontal support. For a given
depth z, the half-width of the whole heap size is zcot¢

and the half-width of the whole elastic core is zcot6 .
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Figure 2 Typical Mohr stress circles for describing the state of
stresses in a granular mound. Pole O is determined by the
intersection of a slip plane ¢ of slope surface and a conjugate
slip plane /2. The state of stresses of plastic region is
represented by the mobilized Mohr circle in which elastic
region including the at-rest condition is located inside.

3. CONTINUUM MECHANICS APPROACH

The idealized granular wedge falls in a class of two-
dimensional problem. Stress components in (x,z)-plane
are given by three independent stress components a,, o,
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and 7,, which must satisfy the equations of equilibrium
throughout the wedge with a constant bulk unit weight y.

oo, . or,, -0 3)
ox 0z

or oo

—= 4+ —L=y where 7_=7_ 4
ox 0Oz r oo @

First, plastic crust is considered. The state of stresses
can be conveniently visualized by Mohr stress circle
drawn in Fig.2 with normal stress axis o, and tangential
shear stress axis z,. The pole of the Mohr circle is shown
by point O which corresponding to (o, 7,;) on the circle
circumference intersected by two slip planes. On g, axis,
the minor principal stress o3 is located by drawing the
line joining the pole to the smallest principal stress. Also,
the major principal stress o; is located by drawing the
line joining the pole to the largest principal stress.

The orientation of major principal stress is represented
by the angle  measured from o,-axis and kept constant
throughout region AOB. Using the geometry shown in
Fig. 2, y can be obtained from a triangle BOP. Jaky
(1944) assigned 6= v , therefore plane OB is parallel to
the direction of major principal stress.

cos.¢ _1 sing )
1+sing  cos¢

According to triangles AOC and COP in Fig.2, shear
stress 7,, mobilized at point O due to Morh-Coulomb
criterion can be related to normal stresses o, and o, by,

9 ©). (7)

As a result, for a given horizontal stress o,, a vertical
stress o, can be determined by substituting Eq.(6) into
Eq.(7) with rearrangement to Eq.(8).

o,=0,+21, tan¢:(1+2tan2¢)ax (8)

Using Eqgs.(6) and (8), in-plane mean stress p and
deviatoric stress g in two-dimensional problem are
defined as the function with o,

_o,to, 1

= o, ®

T ¢ . .
=—+-=,in which coty =
4 ) 4

T,=0 tang, -0, =7, tang

14

2 cos’ ¢

(10)

Stress p and ¢ identifies the center AP and radius PQ of
Mohr stress circle in Fig.2 respectively. Consequently,
the major and minor principal stresses are determined by,

1
o _Jp+al|_ 1-sing o an
o] (p-¢ 1 !
1+sing

As a result, the ratio of the minor to the major principal
stresses is constant as given by Eq.(12). This constant is
known as Rankine’s coefficient of active earth pressure.
e (12
o, l+sing
Stress relations of Eqs.(6) and (8) are substituted into
equilibrium condition Egs.(3) and (4), then obtaining the
first-order spatial derivatives of g, expressed by,

a

1 tan 0
¢ ol ox | _ (13)
tang 1+2tan"¢| |Ooc 4
0z
Components of partial differential equation of horizontal

stress with respective to spatial coordinate (x,z) can be
obtained by manipulating Eq.(13) to,

oo,
—tan
ox | _ 4 i ¢ (14)
0o, | l+tan”¢ 1
0z
The differential of o, is with respect to (x,z) are given by,
do =99 4v 4+ 9% 4, (15)

X

ox 0z
Integration of do, can be carried out due to its simple
form. The integral constant c is left after integration.
= —L—(~angfdr+ [dz)+c (16)
1+tan” ¢
The state of stresses at the apex of granular wedge is
zero, therefore, using the boundary condition defining at
x=0,z=0 for ¢,=0, integral constant ¢ can be obtained and
stress function o, can be determined in closed form.
O=0,hence c=0 (17)

Stress components 7,, and g, are obtained by substituting
o, back to Egs.(6) and (8) Finally, stress field functions of
plastic region either in coordinate parameters (x,z) or
shape parameters (x/z,z) are determined.

o

X

x=0,z=

o, cos’ ¢
o. :yz(l— xt } 1+sin’ ¢ (18)
T, zeotg singcos ¢

4. JAKY’S MODEL

Elastic core is considered in connection with plastic crust
along the plane OB. Therefore, the state of stresses in
plastic region AOB and elastic region BOC must be
equaled. Since plane OB is inclined at the angle 8 with
the horizontal direction, the corresponding coordinate X
can be determined from a given z, or the corresponding
coordinate 7 can be determined from a given x vice
versa using Eqs.(19) and (20).

(19), (20)

The state of stresses along plane OB can be determined
by substitution of x=Xx in Eq.(19) into Eq.(18).

.| [o. 7 cos® ¢

5 l=lo :71[1—“” ] 1+sin® ¢ @1)
_ cotg )| .

T, T, singcos ¢

Jaky (1944) assumed @ =y and chose a quadratic
reduction of 7, along the base to model shear stress
distribution from 7, down to zero at the symmetry plane

OC by introducing a local constitutive equation which
includes a relative horizontal location x/X as follows,

149 -



T, = [é] T, = }/z(fj tan ¢ (1+sin ) (22)
x z

Spatial derivatives of 7 are given by,

ot 2

Ox :yftan¢(1+sin¢) x (23)
az-xz z -

0z

Also, stress in elastic core must satisfy equilibrium
conditions. o, is solved from the partial differential

Eq.(3) by partial integration with x using Eq.(23),

3

o, = —J.%dx +c, = E(fj tang(1+sing)+c, (24)
0z 3\z

where c; is an arbitrary function depending only on z. c,

can be obtained from boundary condition along the plane

OB by substituting x =X in Eq.(19) to Eq.(25),

2 .
1+=sing
o,|._.=0,,hence ¢, =yz

x

(1-sing) (25), (26)

1+sing
o, is solved from the partial differential Eq.(4) by partial
integration with z using Eq.(23),

o, :J.()/— o, jJZJer
0x

= yz[l ~22In(z) tan g (1 +sin ¢))+ c,
Z

where c, is an arbitrary function depending only on x. ¢,
can be obtained from boundary condition along the plane
OB by substituting z =7 in Eq.(20) to Eq.(28),

=3, (28)

c. = yxta.n¢(1+ sin¢)(21n[xl+sm¢j_l_5in¢] (29)

cos¢ 1+sing

@n

At the center line OC, state of stresses expressed by
Eqgs.(24) and (27) have limits when x approaches to zero,

1+ 2 sing
limo =yz——(1-sing), limo. =yz (30), (31
-0 ¥ v ]+51n¢ ( ¢) x>0 ° 4 ( ) ( )
Finally, the ratio of horizontal stress to vertical stress K
is obtained at the symmetry line of the wedge,

o 1+zsin¢
K=limZ=—3 _(1-sing) (32)
0o 1l+sing

Jaky (1944) found that in Eq.(31), o, approaches to an
equivalent geo-static pressure with increasing depth from
ground surface, thus K was assumed to be K, and later

simplified to K, =1-sin¢ . The corresponding state of

stress in vertical plane can be referred to point C in Fig. 2.

5. FIXED PRINCIPAL AXIS MODEL

This class of local constitutive equation was initially
employed by Witter et al. (1996, 1997) to explain the
phenomena of vertical stress dip in the central core. A
linear reduction of 7 along the base was proposed in the

similar manner with Jaky (1944). With the elastic-plastic

boundary fixed at @ =y to the direction of the major

principal stress, shear stress distribution in elastic region
are given by,

T, = § T, =yxsing (33)
X
Spatial derivatives of 7 are given below,
e ysing, Lo (34), (35)
ox 0z

Following the similar procedures of Jaky’s model,
arbitrary functions and closed-form solutions for o, and

o, obtained from partial integration can be given by the
following equations.

T 0
(= _% _ sin2¢
C) —(O‘ [7/ ax szj . 2}/)(,' Cos¢ (37)
Gx = 7Z(I_Sin¢) (38)
o. :yz{l—sin¢+2xsm ¢J (39)
Z cos¢

At the center line OC, state of stresses is determined
by taking limit on x to 0 in Eqgs.(38) and (39). Finally, the
ratio K at the symmetry line of the wedge is obtained.

limo, = rz(1-sing), limo, = yz(l-sing)  (40), (41)

K =1imZ: =1 (42)
-0 g

Because y is fixed throughout the mound, this

solution is termed FPA model (fixed principal axis). FPA
model can represent the full arch effect by exhibiting the
vertical pressure dip due to the largest shear stress
integral induced on the base of granular mound. It is
surprised that the value of K is 1, signifying isotropic
condition at the central core. This result was formerly
discussed by Michalowski (2005) to clarify the reason on
why Jaky (1944) particularly chose a quadratic reduction
instead of a simple linear reduction.

6. GENERALIZED JAKY’S MODEL
To generalize Jaky’s assumption underd =y , the shear

distribution function is reduced by following a power
function as shown below where n is a real number.

xj 7. =yztang(1- sin¢)(X1+Sin¢] 43)

z cos¢

The corresponding partial derivatives are obtained by,
Ory Lin, P 2y (44), (45)
Ox x 0z z "

Following the similar procedures shown previously,
the closed-form solutions for o, and o, obtained from
partial integration can be given by Eqs.(46)-(47). It is
found that the solution o, has the singularity at n=1.
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Thus, the solution of quadratic reduction model obtained
in Eqs.(27)-(29) must replace Eq.(47) when n=1.

. l+n

ﬂ:iftan¢(l—sin¢) x1vsing
v 2 < cosd

(46)

1+ sing
+2+7.”(1—sin¢)
1+sing

0. _y_len(xl+sing Sin¢+2£tan¢w 47
vz 1-n\z cos¢ z 1-n

There is an additional singularity when taking the
limit of o, at the center line. This singularity caused by a

term x" when x approach to 0. Because 0" is
unidentified for n<0 so, if n=0 is employed, this
generalized model must be reduced to FPA model. By
considering the applicable range of n>0, the ratio K is
obtained as the conditional function shown below,

1 if n=0

K=limZr={14_% ging (48)

=0 g 24n . .
< —=T= — (1-sin if n>0
1+sing ( ¢)

According to Table 1, despite the unacceptable K =1
is obtained when n=0, it is found that as n approaches
to 0, the expression of K is favorably moving towards
1-sing . However, the resulted stress distributions

illustrated in Fig.3 by varying n values looks unrealistic
due to appearance of unreliable local minimum of
vertical pressure found between the center line and
elastic-plastic boundary. One may arrive to the
conclusion that all shear reduction models including FPA
and quadratic shear reduction models are not appropriate.
Therefore, the hypothesis proposed by Jaky (1944) are
theoretically acceptable in admissible stress fields but
unreliable in stress distributions as pointed out by
Michalowski (2005) with the conclusion stating that
Jaky’s derivation of K is coincidental.

Table 1 Influence of power degree to coefficient of lateral
earth pressure based on nonlinear reduction of shear stress

n K Note
1-sing . .
S - active condition
1+sing
2 . 1-sing
1 1+=sin Jaky (1944)’s K,
( 3 ¢jl+sin¢ aky (1944)'s
12 [1+fsin¢ 1-sing
5 1+sing

1/4 (1+§sm¢jl_sm¢

1+sing

1/ 1-sing Jaky (1948)’s K,

0 1 isotropic condition

$=33
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Figure 3 Unrealistic stress distributions results from non-linear

shear reduction based on Jaky’s (1944) hypothesis. D-espite of

K —1-sing as n— 0, unreliable local m-inimum of vertical

pressures are appeared for n <0 while the isotropic condition
where K =1 is obtained for n=0.

7. LINEAR SHEAR REDUCTION MODEL

FPA model was later extended and verified by Catelaube
and Goddard (1997), Cates et al. (1998) and Didwania
(2000). Shear stress in elastic core is linearly reduced
along horizontal distant from plastic boundary to zero at
the center but the relative width of elastic core
characterized by the angle @ is not necessarily fixed
with the angle y of the major principal stress direction.
=27 =yz;(lf§)sin¢cos¢ (49)

s

X
Concerning with the solutions obtained from all
models, it is evident that all stress components are
independent of scale effect and able to express in terms
of shape parameters x/z,z . For convenience, the relative
slope variable s, the relative slope s of elastic-plastic
boundary are introduced and replaced x/X in Eq.(49).
X _ X cotd
s= , 8= =
zcotg zcotg cotg
Following the similar procedures of FPA model, stress
field functions are obtained with expressions at the
central core by the following equations.

(50), (51)

o, =yz(1-5)cos’ ¢ (52)

o, —;/z[l—s—(l—l][l—[1+ljsjsin2¢] (53)
5 s

limo, =yz(1-5)cos” ¢ (54)

limo. —yz(l—(l—ljsinz ¢j (55)

50 Ky

The coefficient K is determined by a limit of o, /o,
when s approaches to 0 as shown below. It is found that
K is depended on value of 5 which is considered as an
adjustable parameter of this model.

K —tim % S(1=S)eos’ g (56)
s s—(l—s)smzq)

Various stress distributions can be obtained by
varying s or K in Eq.(56) . If ¥ is specified by taking
0 equal to y , then the model is reduced to FPA model
with K=1. If 5 is selected to maintain the constant
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distribution of o along the horizontal direction, then the
model is reduced to BCC model (Bouchaud, Cates and
Claudin, 1995) with K=K,  (Krynine (1945)’s wall
coefficient). K is a ratio of the lateral to vertical
pressure in a vertical plane of failure. As shown in
Eq.(57), K, gives higher value than Jaky (1948)’s K| .
3 1 _cos’g l-sin’g
" 142tan’$ l+sin’g l+sin’g
If K is taken to K, then the simplified solution of

(57

IFE (incipient failure everywhere) model (Sokolovskii,
1965) can be obtained. If K =1-sing is selected, then
the stress distribution can be illustrated. Four cases of the
explained conditions of K with the specified expressions
of 5 are summarized in Table 2. In Fig.4, the variations
of stress distribution due to s are illustrated and
compared with experiments conducted by Vanel et al.
(1999). It is found that though K should not be related
with K, , the reasonable stress distributions under

K=K, =1-sin¢ can be demonstrated thru this model.

So, difference of K could be the result of arching effect
and parameter 5 could be regarded as arching condition.

Table 2 The elastic-plastic boundary location determined by
various coefficients of lateral earth pressure based on linear
shear reduction model

case K =
q zsind sing(1+sin” g+ 2sing +2)

1+sing (1+sin¢)2

i —si \/27

2 1-sing sm¢(l sin ¢ +4/sin ¢+2sm¢+5)
2(1+sing)
3 o __sing__
1+sin® ¢ m
Y : 1+sing

Experiments by Vanel et al. (1999)
Sand heaps formed by
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Figure 4 Comparisons between experimental results and stress

distributions based on linear shear stress reduction ass-umption

which can obtain (1) active earth pressure, (2) Jaky (1948)’s K,,,
(3) Krynine (1945)’s K,,, (4) isotro-pic earth pressure.

8. CONCLUSION

A series of generalized solutions aiming to formulate K,
equations based on Jaky (1944)’s hypothesis was
presented. These reviews confirm to the conclusion made
by Michalowski (2005) that Jaky’s K, is coincidental.

The class of shear reduction models is not matched with
experiments if Jaky’s assumption is followed by fixing
the relative width with principal stress direction. Thus,
this width should be regarded as a variable which
controls arching condition. Then various coefficients of
lateral earth pressure are the results of arching effects.
Also, this study demonstrated the lateral earth pressure in
the mid-plane of the mound can be estimated by K.
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