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Abstract 

A high-frequency open boundary condition has been developed for 

transient seepage analyses of an isotropically saturated soil layer with a 

constant depth. The boundary condition of the open boundary is derived in 

the frequency domain by adopting the continued fraction technique. The 

coefficients of the continued fraction solution are determined recursively 

at the high-frequency limit. By introducing auxiliary variables and the 

high-frequency continued fraction solution to the prescribed seepage flow 

of water-pore water pressure relationship in the frequency domain, the 

open boundary condition is eventually in terms of a system of fractional 

differential equations after transformed to the time domain. No 

convolution integral is required. The accuracy of the analysis results 

increases with the increasing order of the continued fraction.  

Keywords: seepage, pore water pressure, open boundary condition, 

continued fraction, dynamic stiffness 

1. Introduction 

In numerical modeling of unbounded domains, the domains are 

usually truncated somewhere to specify their far field boundaries with 

fixed or free boundary conditions due to their very large areas. Such 

boundary conditions imposed in the modeling often lead to spurious 

reflections at the truncated boundaries when transient analyses of the 

domains are carried out. As a result, the solutions obtained from the 

analyses are numerically polluted. Several approaches were hence 

proposed and have been continuously developed to cope with such a 

problem, such as the boundary element method (BEM) [1-3], the infinite 

elements [4-6], the scaled boundary finite element method (SBFEM) [7-

8], absorbing boundary conditions (ABCs) implemented in the finite 

element method (FEM) [9-12], and the perfectly matched layer (PML) that 

is able to attenuate propagating waves [13-14], etc. These approaches are 

able to satisfy the boundary condition at infinity, in other words, the 

radiation condition. 

Apart from such approaches, there is another interesting one, the high-

order transmitting boundary, which is based on use of the continued 

fraction technique [15]. The transmitting boundary was introduced to study 

the displacement responses of semi-half spaces under dynamic loads at 

high frequencies. Its boundary condition is expressed as a system of first-

order differential equations in the time domain. The distinct advantage of 

the boundary is that it can be implemented with FEM. Therefore time-step 

schemes are applicable to the time-domain analysis, and the convolution 

integral, which is a computationally expensive task, is no longer required. 

Soon after, the doubly asymptotic open boundaries were developed from 

such a transmitting boundary using the same continued fraction technique, 

but extending to the low-frequency expansion [16-17]. The boundaries are 

specifically applicable to full-planes with a circular cavity and semi-

infinite layers with a constant depth [18]. 

One of the important problems in the modeling of unbounded domains 

is seepage flow of groundwater since the pore water pressure generated in 

soil mass may significantly affect existing structures such as tunnels, dams, 

etc. Some of the mentioned approaches were also developed for transient 

seepage analyses in infinite media, for example, the finite element method 

with cloning cell technique [19], the infinite element using the hydraulic 

head distribution function [20], and the infinite element using the 

analytical solution of a one-dimensional axially symmetric configuration 

[21]. 

The objective of the paper is thus aimed at developing a high-order 

open boundary condition used for transient seepage analyses of a semi-

infinite layer with a constant depth under short-time and long-time seepage 
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flow of water to study the responses of pore water pressure. The 

unbounded domain used in the analyses is herein assumed to be an 

isotropically saturated soil with a constant depth. 

2. Dynamic Stiffness of Unbounded Domain 

For an isotropically saturated soil, the governing equation of two-

dimensional transient seepage is expressed as a second-order differential 

equation, 

 2 1u u
c

     (1) 

where the pore water pressure u = u(x,z,t), the Laplace operator 2 = 
2/x2 + 2/z2 and c denotes the coefficient of consolidation. The 

arguments of functions are omitted herein for simplicity in the 

nomenclature. The initial condition of the unbounded domain initially at 

rest is given as 

         (0 ,  0)wu z z d t      (2) 

where w is the unit weight of water and d is the depth of the soil layer. 

The geometry and boundary conditions of the soil layer are given in 

subsection 2.1. By employing the method of separation of variables, Eq.(1) 

can be transformed to a series of one-dimensional transient seepage 

equations. From a two-dimensional transient seepage equation and the 

definition of a dynamic stiffness coefficient, an equation of the dynamic 

stiffness coefficient can be derived. 

2.1 Saturated soil layer with constant depth 

An isotropically saturated soil layer with a constant depth d as shown 

in Fig. 1 represents an unbounded domain of which the right-hand 

boundary extends to infinity. For convenience, the x-axis of the coordinate 

system is chosen at the upper boundary U of the layer. The formulation 

of the proposed open boundary condition is based on the dynamic stiffness 

representing the property of the soil layer. It is dependent of the coordinate 

system. The boundary conditions of the soil layer are as follows: at the 

upper boundary U (z = 0), u = 0 for 0 < t < , while at the lower 

boundary L (z = d), u = u0 for t = 0, and the vertical boundary V (0 

 z  d),u = 0 for t = 0. 

 

 

Fig. 1. Saturated soil layer with constant depth 

Equation(1) is also expressed in the frequency domain as 

 
1, , (i ) 0xx zzU U U
c

     (3) 

where the amplitude of pore water pressure U = U(x,z,), the unit 

imaginary number 1i   , and  denotes the excitation frequency. 

The solutions of Eq.(3) can be determined using the method of separation 

of variables as expressed in the following equation: 

 U XZ   (4) 

where X = X(x,) and Z = Z(z). Substituting Eq.(4) into Eq.(3) and 

multiplying the equation by d2 yield 

 2 2
0

, ,
(i )xx zzX Z

d a d
X Z

     (5) 

where the dimensionless frequency is defined as 

 
2

0
da
c


   (6) 

It is necessary that both sides of Eq.(5) must be equal to the same constant, 

which is denoted as 2. Hence, Eq.(5) can be separated into the following 

two equations: 

 
2

, 0zzZ Z
d
   

 
  (7) 

 2
02

1, ((i ) ) 0xxX a X
d

     (8) 

The solutions of Eq.(7) are in the form of 

 1 2cos sinZ C z C z
d d
        

   
  (9) 

where C1 and C2 are constants. At z = 0, the boundary condition is u = 
0. This implies that Z in Eq.(4) must be equal to zero. As a result, C1 in 

Eq.(9) is zero while C2 is arbitrary. C2, however, never be calculated and 

is negligible. Therefore, Eq.(9) can be reduced to the eigenfunction, 

 sin         ( 0,  1,  2,  ...)j
jZ z j

d
 

   
 

  (10) 

which are the nontrivial solutions of Eq.(7), where 

 
(2 1)

2j
j 




   (11) 

The index j denotes a mode number. This implies that  in Eq.(8) varies 

with each mode. For the one-dimensional seepage equation (Eq.(8)), its 

solution that satisfies the boundary condition at infinity is given in the form 

of modal pore water pressure amplitude, 
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2

0(i ) /ja x d
j jX C e  
   (12) 

where Cj is a constant. The prescribed seepage flow amplitude of each 

mode Qj = Qj(x,) on the vertical boundary at arbitrary x is expressed 

as 

 ,j j xQ dX    (13) 

Substituting Eq.(12) into Eq.(13) in turn yields 

 
2

0

1
(i ) /2

0(i ) ja x d
j j jC a e Q


  

  
 

  (14) 

By substituting Eqs.(10) and (12) back into Eq.(4), and using Eqs.(11) and 

(14), the solution of each mode is expressed as 

   1
2

0(i ) sin j
j j jU a Q z

d



  

    
 

  (15) 

An alternative way to determine Xj can be done by introducing the 

dynamic stiffness coefficient Sj = Sj (a0) to the prescribed seepage flow 

of water-pore water pressure relationship, 

   1
j j jX S Q

   (16) 

, which is equivalent to the force-displacement relationship as derived in 

[16]. Substituting Eq.(13) into Eq.(16) yield 

 
1,j x j jX S X
d

    (17) 

Differentiating Eq.(17) with respect to x and substituting Eq.(17) to the 

differentiated equation lead to  

  2

2
1,j xx j jX S X
d

   (18) 

Substituting Eq.(18) into Eq.(8) and eliminating Xj in the equation the 

dynamic stiffness equation of each mode j yield  

  2 2
0(i ) 0j jS a       (19) 

The solution of Eq. (19) can be determined as 

 2
0(i )j jS a      (20) 

Only the positive root is chosen to satisfy the boundary condition at 

infinity. By substituting Eqs.(10) and (16) back into Eq.(4), and using 

Eq.(20), the solution of each mode is expressed as similar as Eq.(15), 

   1
2

0(i ) sin j
j j jU a Q z

d



  

    
 

  (21) 

The solution in the time domain of either Eq.(15) or Eq.(21) after 

expressed in the frequency domain can be determined using the 

convolution integral, 

 1

0

t
j j ju s q d    (22) 

where the pore water pressure uj = uj(t), the flexibility coefficient sj1 = 

(sj(t – ))1 and the prescribed seepage flow of water qj = qj().  

2.2 High-frequency continued fraction solution 

This section describes the solution of the dynamic stiffness equation 

for modal dynamic stiffness coefficient (Eq.(20)). The solution is sought 

as a high-frequency continued fraction solution. Only one step is involved 

in the solution procedure i.e. a continued fraction solution is determined at 

the high-frequency limit recursively. In each recursion, the coefficients of 

one term of the continued fractions is obtained, and an equation is 

established for the residual. For simplicity in the derivation, the modal 

index subscript j is omitted in this section. The continued fraction solution 

at the high-frequency limit is written as 

 (1) 1
0(i )( )S K a Y 

    (23a) 
( )( ) ( 1) 1

00 (i )( )         ( 1,  2,  3,  ...,  )ii i
HY Y a Y i M     (23b) 

where K and Y0
(i) are coefficients to be determined recursively in the 

solution procedure. (ia0)(Y(1))1 and (ia0)(Y(i+1))1 are the residual terms 

where Y(i) = Y(i)(a0) and Y(i+1) = Y(i+1)(a0). MH is the order of the 

continued fraction solution at a high frequency. The coefficient K is 

determined by substituting Eq.(23a) into Eq.(20). This leads to an equation 

of a power series of (ia0), including the following two terms:  

2 2 (1) 1 (1) 2
0 0( ) (i )(1 2 ( ) (i )( ) ) 0K a K Y a Y  

       (24) 

This equation is satisfied by setting all the terms equal to zero. Thus the 

solution for K that satisfies the boundary condition at infinity is obtained 

from the first term (constant term) by selecting the positive root. Thus, 

 K     (25) 

The last term of Eq.(24) is an equation of Y(1). After being multiplied by 

(Y(1))2 and substituted with Eq.(25), the last term becomes  

 ( )( ) 2 (i) ( )
00( ) (i ) 0ii iY b Y a c     (26) 

with the introduced constants 

 (1)
0 2b    (27) 

 (1) 1c    (28) 
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for the case of i = 1. To begin the recursive procedure, Eq.(23b) with i = 

1 must be substituted into Eq.(26). This also results in an equation of a 

power series of (ia0) grouped into the following two terms: 

 ( ) ( ) ( ) ( )2 ( ) ( 1) 1
00 0 0 0(( ) ) (i )( ( )i i i ii iY b Y a c b Y        

 ( ) ( 1) 1 ( 1) 2
002 ( ) (i )( ) ) 0i i iY Y a Y        (29) 

Equation(29) is also satisfied by setting all the two terms equal to zero. 

The non-zero solution of the first term (constant term) is 

 ( ) ( )
0 0
i iY b    (30) 

The last term of Eq.(29) is an equation of Y(i+1). After being multiplied by 

(Y(i+1))2 and substituted with Eq.(30), the last term becomes the recursive 

equation used in the high-frequency limit, 

 ( 1)( 1) 2 ( 1) ( 1)
00( ) (i ) 0ii i iY b Y a c       (31) 

with the introduced constants 

 
( )

( 1) 0
0 ( )

i
i

i
b

b
c

     (32) 

 ( 1)
( )
1i
ic

c
    (33) 

The high-frequency continued fraction solution in Eq.(23a) is constructed 

from the solutions of the constants K in Eq.(25) and Y0
(i) in Eq.(30). For 

example, the high-frequency continued fraction solution with the order 

MH = 3 can be written as 

 0

(1) 0
0

(2) 0
0 (3)

0

(i )
(i )

(i )

aS K
aY aY
Y


 




  (34) 

2.3 High-frequency open boundary condition 

The high-frequency open boundary condition in the frequency domain 

is constructed using the relationship between the prescribed seepage flow 

amplitude Q and modal pore water pressure amplitude X as expressed 

below 

 Q S X   (35) 

where S denotes a continued fraction solution using Eqs.(23a) and (23b) 

in the previous subsection. Afterwards, substituting Eq.(23a) into Eq.(35) 

leads to 

 1/2 (1)
0(i )Q K X a X    (36) 

where the introduced auxiliary variable X(1) is defined as 

 (1) 1/2 (1) 1
0(i ) ( )X a Y X   (37) 

Rearrange Eq. (37) as 

 1/2 (1) (1)
0(i )a X Y X   (38) 

which is as similar as the form in Eq.(35). Similarly, an auxiliary variable 

is introduced for each term of the continued fraction in Eq.(23b). This 

results in 

 1/2 ( ) ( 1) ( 1)
0(i )         ( 0,  1,  2,  ...,  )i i i

Ha X Y X i M     (39) 

where Eq.(38) is included as the case of i = 0 with X(0) = X. Multiplying 

Eq.(23b) by X(i) and using the definition of auxiliary variables in Eq.(39) 

formulated with i and i  1 result in  

 ( )1/2 ( 1) ( ) 1/2 ( 1)
0 00(i ) (i )ii i ia X Y X a X  

 ( 1,  2,  3,  ...,  )Hi M   (40) 

The residual ( 1)HMX  of an order MH high-frequency continued fraction 

solution is approximated as zero. Equations(36) and (40) are all combined 

to form a matrix equation, 

 1/2([ ] (i ) [ ]){ } { }h hK C X Q     (41) 

where ( )(1){ } [ ,  ,  ...,  ]HM TX X X X and { } [ ,  0,  ...,  0]TQ Q  

while the time-independent matrices 

 

(1)
0

(2)
0

( )
0

[ ]

H

h

M

K

Y
K Y

Y

 
 
 
   
 
 
  



  (42) 

 

1
1 1

[ ] 1
1

1

h
dC
c

 
   
  
 

 
  





  (43) 

The function{ }X includes the modal pore water pressure amplitude X on 

V and all the auxiliary variables
( 1)(1)( ,  ..., )HMX X 

and the only non-

zero entry at the right-hand side{ }Q includes the prescribed seepage flow 

amplitude of water Q. Note that Eq.(6) is substituted into the equation to 

replace (ia0) with (i). The matrix [Kh] is diagonal while the matrix [Ch] 
is banded and symmetric. Equation(41) can be transformed into the open 

boundary condition in the time domain as the following equation: 

 [ ]{ } [ ] { } { }p
h hK x C D x q      (44) 

where ( )(1){ } [ ,  ,  ...,  ]HM Tx x x x ,{ } [ ,  0,  ...,  0]Tq q and Dp = 

dp/dtp is the fractional derivative operator of order p which is equal to 

1/2. The vector{ }x can be solved by employing the improved numerical 

method of Riemann-Liouville fractional derivative [22] in association with 
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the Newmark's method using the average acceleration scheme as expressed 

in the following steps: 

step 1: solve for 1{ }nx  in the following equation: 

 

1

1{ } [ ] [ ]
(1 )(2 ) (1 )

p

n h h
tx K C

p p p







 

       
  

1/2
1 0

1 1{ } [ ]( { } { }
(1 ) 2 2

p
n h n n

tq C t x t x
p

 


 
     

     

2 1
1/2

1
1

( ) { } ) [ ]
(1 )(2 ) (1 )

n p

n k t h
k

tt k t x C
p p p

 


 



   

      

( { } ( 2 ){ } ( 1) { } )
2n n nx p x t x

t
  
  


        

      (45) 

step 2: solve for 1{ }nx 
 in the following equation: 

1 12
1 1{ } ({ } { } { } ) ( 1){ }

2( )n n n n nx x x t x x
t       


         

  (46) 

using 1{ }nx  from Eq.(45);  

step 3: solve for 1{ }nx 
 in the following equation: 

 1 1{ } { } (1 ) { } { }n n n nx x t x t x                (47) 

using 1{ }nx 
 from Eq. (46). Note: n is the time station and the gamma 

function (1 )p    , and the constants  and  are 0.5 and 0.25, 

respectively. 

3. Numerical Examples 

For simplicity in the analyses, the ratios of d2/c is assumed to be equal 

to 1 through all the examples. 

3.1 Example 1  

In the first example, the testing of the open boundary condition at a 

high-frequency mode is carried out. The mode j = 1000 with  = 

2001(/2) is selected as such a high-frequency mode. The prescribed 

seepage flow of water is chosen as an impulse function as shown in Fig. 

2(a) of which the Fourier transform is displayed in Fig. 2(b). The highest 

dimensionless frequency of interest is observed as 150. 

 

 
(a)  (b) 

Fig. 2. Prescribed seepage flow of water as impulse function:  

(a) time history and (b) Fourier transform 

In the frequency-domain analysis, the analysis result obtained from 

the continued fraction solution of dynamic stiffness (Eq.(23a)) using MH 

= 1 is plotted as real and imaginary parts with respect to the dimensionless 

frequency a0 as shown in Figs. 3(a) and 3(b), respectively. For the real 

part, the obtained result becomes a straight line, intersecting the y-axis at 

1, whereas that of the imaginary part is an inclined line with a very low 

gradient, intersecting the origin. In comparison with the exact solution of 

dynamic stiffness (Eq.(20)), the continued fraction solution performs well 

since the curves of the real and imaginary parts of the solution fit those of 

the exact solution. 

 

  
(a)  (b) 

Fig. 3. High-frequency continued fraction solution with MH = 1 for  

modal dynamic stiffness ( = 2001(/2) : (a) real part and (b) imaginary part 

In the time-domain analysis, the time step t used for the convolution 

integral (Eq.(22)) and the open boundary condition (Eq.(44)) with MH = 

1 is selected as 0.02 to gain the accurate responses of pore water pressure. 

The responses obtained from the convolution integral and the open 

boundary condition are plotted in Fig. 4. The responses are normalized by 

the seepage flow amplitude AT with respect to the dimensionless time t  

, which is equal to tc/d2. It can be seen that the response curve obtained 

from the open boundary condition with merely MH = 1 fits the response 

curve obtained from the convolution integral throughout the entire range. 

 

 

Fig. 4. Modal response of pore water pressure ( = 2001(/2)) by  

high-frequency open boundary condition with MH = 1 

3.2 Example 2  

The mode j = 1000 of the first example is still tested in the second 

example, but the prescribed seepage flow function is changed to be a 
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harmonic function, q ( )t  = AT sin( 2 ft ), where the amplitude AT = 

1 and the frequency f = 2.5 as shown in Fig. 5(a) for the time history and 

Fig. 5(b) for its Fourier transform. The time step t used for the 

convolution integral and the open boundary condition is reduced to be 0.01 

so as to gain the accuracy of the results. 

 

 
(a)  (b) 

Fig. 5. Prescribed seepage flow of water as harmonic function:  

(a) time history and (b) Fourier transform 

The response curve of pore water pressure obtained from the open 

boundary condition with MH = 1 corresponds to that of the exact 

responses as plotted in Fig. 6(a). When the curve obtained from the open 

boundary condition is considered closely as zoomed in Fig. 6(b) to 6(d) for 

three ranges, the curve fits that of the exact response throughout the entire 

range. Being similar to the first example, the open boundary condition with 

merely MH = 1 still performs well at the high-frequency mode for the case 

of harmonic seepage flow of water. 

 

 
(a)  (b) 

                 
(c)  (d) 

Fig. 6. Modal response of pore water pressure ( = 2001(/2)) by 

high-frequency open boundary condition with MH = 1: 

(a) for 0  t  12, (b) for 0  t  4, (c) for 4  t  8, 

and (d) for 8  t  12 

3.3 Example 3  

In the third example, the mode j = 0 with  = /2, which is a low-

frequency mode, is selected for the test. The prescribed seepage flow of 

water represented by the impulse function used in the first example (see 

Fig. 2(a)) is re-applied in this example. 

In the frequency-domain analysis, the analysis results of the continued 

fraction solution of dynamic stiffness using MH = 1, 4 and 8 are plotted 

in Figs. 7(a) and 7(b) for the real and imaginary parts, respectively. For the 

real part, the result obtained from MH = 1 becomes a straight line, 

intersecting the y-axis at 1, whereas that of the imaginary part is an 

inclined line, intersecting the origin. It is perceived that the curve of the 

continued fraction solution is obviously different from that of the exact 

solution. However, when the order of continued fraction MH increases to 

4, the accuracy of the continued fraction solution increases as well. Until 

the order MH increases up to 8, the continued fraction solution approaches 

the exact one. In other words, the accuracy of the continued fraction 

solution increases with the increasing order. Compared to the first two 

examples at the high-frequency mode, in this example at the low-frequency 

one, the order of continued fraction used is higher in order to gain more 

the accurate result. 

 

  
 (a)  (b) 

Fig. 7. High-frequency continued fraction solution with MH = 1, 4 and 8 for 

modal dynamic stiffness ( = /2): (a) real part and (b) imaginary part 

In the time-domain analysis, the time step t used for the convolution 

integral and the open boundary condition with MH = 1 is selected as 0.005 

to gain the accurate responses of pore water pressure. The analysis results 

are plotted in Fig. 8. From the obtained results, it is noticed that as the order 

of continued fraction increases from 1 to 4, the accuracy of the responses 

also increases. As soon as the order increases up to 8, the response curve 

almost fits that of the exact response under the impulse seepage flow of 

water. This shows that a higher order is required for an accurate result in 

the time-domain analysis at a low-frequency mode. 

 

 

Fig. 8. Modal response of pore water pressure ( = /2) by 
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high-frequency open boundary condition with MH = 1, 4 and 8 

3.4 Example 4 

In the last example, the low-frequency mode  = 1 is selected for the 

test. The prescribed seepage flow of water under an earthquake (long-time 

seepage flow) as assumed in Fig. 9(a) with its Fourier transform in Fig. 

9(b) is used in this analysis. 

 

  
(a)  (b) 

Fig. 9. Prescribed seepage flow of water under earthquake excitation:  

(a) time history and (b) Fourier transform 

In the frequency-domain analysis, the analysis results obtained from 

the continued fraction solution of dynamic stiffness using MH = 1, 5 and 

10 are plotted in Figs. 10(a) and 10(b) for the real and imaginary parts, 

respectively. Being similar to the third example, the continued fraction 

solution approaches the exact one with the increasing order. As the order 

increases up to 10, the curves of the real and imaginary parts of the 

continued fraction solution nearly fits those of the exact one. 

 

  
(a)  (b) 

Fig. 10. High-frequency continued fraction solution with MH = 1, 5 and 10 for 

modal dynamic stiffness ( = 1): (a) real part and (b) imaginary part 

In the time-domain analysis, the time step t of 0.005 is also used for 

both the convolution integral and the open boundary condition to gain the 

accurate responses of pore water pressure. Similarly, the accuracy of the 

open boundary condition increases with the increasing order of continued 

fraction as plotted in Fig. 11. It is noted that when the order of continued 

fraction increases to 5, the response curve is almost the same as that of the 

convolution integral, except at the turning points (where the slopes are 

equal to zero); for example as zoomed in Fig. 11(b) for the range of 0  t  
 5. However, to obtain the more accurate results for the entire range at 

the turning points, the order of continued fraction has to increase up to 10 

as zoomed in Figs. 11(c) to 11(d). This reveals that the open boundary 

condition also performs well under earthquake excitation even at a low-

frequency mode with use of a higher order. 

 

  
(a)  (b) 

 
(c)  (d) 

Fig. 11. Modal response of pore water pressure ( = 1) by 

high-frequency open boundary condition with MH = 1, 5 and 10: 

(a) for 0  t  15, (b) for 0  t  5, (c) for 5  t  10, 

and (d) for 10  t  15 

4. Conclusion 

The high-order high-frequency open boundary condition introduced 

herein is specifically applicable to modal transient seepage equations of 

isotropically saturated soil layers with a constant depth. The open 

boundary condition is expressed as a system of fractional differential 

equations in the time domain.  

The two time-independent coefficient matrices, the static stiffness and 

damping matrices, are diagonal and symmetrically banded, respectively. 

Therefore, well-established time-stepping schemes in structural dynamics 

are directly applicable, and convolution integral is no longer required.  

As demonstrated in the numerical examples using the impulse, 

harmonic seepage flow of water and also the seepage flow of water under 

earthquake excitation, the accuracy of the analysis results in both 

frequency and time domains increases with the increasing order of 

continued fraction. The open boundary condition performs well at the 

high-frequency modes with a low order of continued fraction. Only at the 

low-frequency modes, a higher order of continued fraction is required to 

gain an accurate result. 
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