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Abstract

This thesis presents the development of high-order doubly asymptotic open bound-
aries used for the numerical simulation of wave propagation problems in unbounded
domains, including homogeneous semi-infinite layers with a constant depth, homo-
geneous full-planes with a circular cavity and semi-infinite layered systems. The
proposed open boundaries are necessary for dynamic and seismic analyses of large-
scale structures such as dams, nuclear power plants etc. The theoretical framework
of the research in the thesis is extended by employing the scaled boundary finite
element method, which is a semi-analytical fundamental-solution-less boundary-
element method based on finite elements.

To avoid the computationally expensive task of numerically integrating the scaled
boundary finite element equation in dynamic stiffness, the doubly asymptotic con-
tinued fraction solution for dynamic stiffness matrices is developed in the frequency
domain using the technique of continued fraction. Factor coefficients or matrices are
introduced in the continued fraction solution to improve the stability of the solution.
As the continued fraction orders increase, the doubly asymptotic continued fraction
solution converges to the exactness at both high- and low-frequency limits.

By introducing auxiliary variables and the doubly asymptotic continued fraction
solution to the force-displacement relationship in the frequency domain, a high-
order doubly asymptotic open boundary condition is obtained. The open boundaries
are expressed as systems of first-order ordinary differential equations in the time
domain which are similar to the equation of motion with time-independent matrices
in structural dynamics.

The high-order doubly asymptotic open boundaries can be coupled seamlessly
with standard finite elements. The accuracy of the results in the frequency and time
domains depends on the orders of continued fraction selected by the user. Standard
time-step schemes e.g. the Newmark’s method etc. in structural dynamics are
directly applicable to the high-order doubly asymptotic open boundaries for the
implementation in the time domain. No convolution integral, which is the expensive
task in the time-domain analysis, is required.
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“Mystery has its own mysteries, and there are gods above gods. We have ours, they
have theirs. That is what’s known as infinity.”

Jean Cocteau (1889-1963)
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Chapter 1

Introduction

1.1 Statement of problem

Today, millions of people throughout the world live with a significant risk to their
lives and property from earthquakes. Earthquakes have occurred for millions of years
and will occur in the future as they occurred in the past. Some may occur in remote
or underdeveloped areas. Some may occur near densely populated areas in seismic
regions. Therefore, the seismic safety of large-scale structures, for example, dams is
a major concern, especially in such seismic regions. Hence, the performance of those
structures during an earthquake must be analyzed in a realistic way and evaluated
carefully in the time domain. The existing approaches used in the analyses and
evaluations are based on the reliable research from the past to the present. Some
provide accurate results but are inefficient. Some are efficient but yield low accurate
results. Thus this research aims at developing an advanced numerical approach
which is not only efficient, but can also provide accurate results of the seismic
analysis and also the dynamic analysis of large-scale structures.

In this thesis, dams are used as examples to represent large-scale structures.
An example is shown in Fig. 1.1.1. Apart from the dams, the so-called numerical
approach is also applicable to other types of large-scale structures, such as long-span
bridges, nuclear power plants, etc. Most of the pertinent research on the seismic
analysis of structures (see Fig. 1.1.1) usually includes the following topics:

1. Modeling of the bounded domain (structure): the modeling must include non
linearity and cracks since an earthquake can induce immense stresses in the
dam body that may exceed the linear response range of the concrete and may
cause cracking of the dam body (Chopra and Chakrabarti, 1972).

1



2. Modeling of the unbounded domains (in other words, the infinite regions or
the far fields e.g. reservoirs and foundations): the modeling must satisfy the
boundary condition at infinity or the radiation condition which states that no
energy be radiated from infinity towards the structure (Wolf and Song, 1996).
The energy carried by the waves is irreversibly transferred from the structure
to the far field. The unbounded domain has an important consequence in wave
propagation.

3. Hydrodynamic pressure: the hydrodynamic pressure acting on the dam is
caused by the dam-reservoir interaction, which has considerable influence on
the dynamic responses of the dam. The vibration of the dam body and the
water pressure are dependent on each other (Chopra, 1968, 1970).

4. Soil-structure interaction: the movement of the dam body is induced by the
ground motion caused by an earthquake. The actual seismic responses of the
dam interact with the motion of the supporting foundation. This interaction
is recognized as a significant effect (Tan and Chopra, 1996; Wolf, 1985, 1988).

5. Earthquake input model: the selecting input models in the analysis can affect
the analysis results (Bayraktar et al., 2005). The level of sophistication to be
used in defining the seismic input is closely related to the degree of under-
standing of the dynamic behavior of the dam system and to capabilities for
modeling such behavior. The progress in defining seismic input has, therefore,
followed a long evolutionary process parallel to that of the dynamic analysis
capability.

.

.

..
. .

.

.

.
.

.

.

Soil-structure interaction

Hydrodynamic pressure

Cracks

Seismic excitation

∞

Dam

Foundation

∞
∞∞

Figure 1.1.1: Seismic analysis system
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One of the most difficult topics in the seismic analysis of structures is the mod-
eling of the unbounded domains or the far fields. The infinite extend of the far field
is of importance to wave propagation problems. Traveling or propagating in the
unbounded direction towards infinity, waves are not reflected back to the near field
from which they propagated. As a result, energy carried by the propagating waves
is irreversibly transferred from the near field to the far field. This mechanism is
called radiation damping. In the modeling of the far field, the boundary condition
at infinity also known as the radiation condition must be satisfied.

As generally understood, imposing the condition of vanishing displacement am-
plitude at infinity is insufficient to seek a unique solution for a wave propagation
problem. In 1949, Sommerfeld proposed the radiation condition in order to guar-
antee the uniqueness of solutions for boundary-value problems. The propagation of
scalar waves described mathematically by the Helmholtz equation is addressed,

∇2U(ω, r) + k2U(ω, r) = 0 (1.1.1)

where ∇2 denotes the Laplace operator, k is the wave number, U(ω, r) is the wave
amplitude, r is the radial coordinate and ω the excitation frequency. The radiation
condition states that “sources are to be sources, not sinks of energy” i.e. if the
energy radiated by a source, it must disperse at infinity and must not be radiated
from infinity towards the source. Thus unbounded domains are regarded as energy
sink, not energy source. The radiation condition applied at infinity is expressed in
the frequency domain as

lim
r→∞

r
(s−1)

2 (U (ω, r) ,r +ikU(ω, r)) =0 (1.1.2)

where s is the spatial dimension and i is the standard imaginary unit. It is obvious
that only outgoing waves can satisfy Eq. (1.1.2) while incoming waves cannot.

One of the simplest approach to model an unbounded domain is the finite element
method (FEM). The structure and a part of the unbounded domain adjacent to the
structure is divided into finite elements. The finite element mesh has to terminate
somewhere at a finite distance. In case of static analyses, only a simple boundary
condition such as the Dirichlet boundary condition (fixed boundary) is enough for
the analyses by enforcing the condition on the truncated boundary. This is because
the displacements of the unbounded domain decrease with the increasing distance
from the structure.

However, in case of dynamic analyses, such a simple boundary condition is not
enough to satisfy the radiation condition because the waves propagating from the

3



source of excitation or the scatterer (where the load R is applied in Fig. 1.1.2) are
still reflected at the truncated boundary, for example, the one-dimensional problem
of an infinite bar as shown in Fig. 1.1.2. In Fig. 1.1.2(a), the bar is excited by a
load R at the left end while the right end is fixed. When the load R is applied
to the left end, a wave u propagates to the right-hand side at once. As soon as
the propagating wave u impinges the truncated boundary or the fixed end (see Fig.
1.1.2(b)), it is reflected back toward the source of excitation or the left end (as shown
in Fig. 1.1.2(c)). This means that the energy carried by the wave is still trapped in
the computational domain.

R
u

u

u

(a)

(b)

(c)

Figure 1.1.2: Wave reflection at truncated boundary

In contrast, in reality, the right end of the bar is at infinity as shown in Fig.
1.1.3. When the bar is excited by the load R at the left end (see Fig. 1.1.3(a)), a
wave u propagates toward the right-hand side without any reflection as far as the
impedance of the bar does not change (see Fig. 1.1.3(b)). Finally, the energy carried
by the wave u must be lost at infinity while the left end still remains stationary as
shown in Fig. 1.1.3(c).

R
u

u

(a)

(b)

(c)

+∞

+∞

u

+∞

Figure 1.1.3: Wave satisfaction at infinity

To satisfy the radiation conditions is the most challenging task in the soil-
structure interaction analyses of large-scale engineering problems. In the context
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of dynamic soil-structure interaction, there are two main approaches used in anal-
ysis: the substructure method and the direct method as explained in Section 1.2
(Wolf, 1988; Aydinuğlu, 1993; Wolf and Song, 1996). They are employed in com-
bination with global and local boundary conditions formulated at a finite distance
from the structure (Section 1.3).

1.2 Substructure and direct methods

The fundamental concept of the substructure method is that a system is divided
into two substructures, bounded and unbounded substructures as shown in Fig.
1.2.1. The bounded domain or the finite region is made up of the structure and
the irregular soil adjacent to the structure. The unbounded domain or the infi-
nite region includes only the regular soil extending to infinity. For the bounded
domain, its behavior is assumed to be non-linear and usually modeled with finite
elements. For the unbounded domain of infinite dimensions, its dynamic property
is represented by a dynamic stiffness matrix on the soil-structure interface. Usu-
ally, the unbounded domain that is beyond the soil-structure interface is assumed
to have regular properties e.g. isotropy, homogeneity, etc., behaving linearly. In the
substructure method, the discretized boundary that encloses the bounded domain
coincides with the soil-structure interface, and the rigorous boundary condition is
enforced on it. The discretized boundary with the rigorous boundary condition is
called a rigorous boundary. As shown in Fig. 1.2.1, a rigorous boundary is placed
on the soil-structure interface, representing the whole unbounded domain.

.

Irregular soil

Rigorous boundary at soil-structure interface

.

.

..
. .

.

.

.
.

.

Dam

.

Regular soil

∞

∞ ∞

∞

Figure 1.2.1: Substructure method
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By combining the substructure method with a rigorous boundary, the relation-
ship between force and displacement formulated on the soil-structure interface that
satisfies the radiation condition is coupled with the substructure of the bounded
domain. This leads to the governing equations of the total dynamic system, and can
be regarded as a boundary condition which is generally rigorous. In the frequency
domain, such a boundary condition is expressed as the following equation:

{R(ω)} = [S∞(ω)]{U(ω)} (1.2.1)

where {R(ω)} is the interaction forces, [S∞(ω)] the dynamic stiffness matrix of
the interface, and {U(ω)} the displacements of the nodes on the interface. The
superscript ∞ denotes the unbounded domain and ω is the excitation frequency.
Since this boundary condition is linear, when the non-linear behavior of the bounded
domain is considered, the simulation has to be carried out in the time domain.

This can be done by transforming the boundary condition in the frequency do-
main (Eq. (1.2.1)) to the time domain using the inverse Fourier transform as ex-
pressed in

{r(t)} =

∫ t

0

[s∞(t − τ)]{u(τ)}dτ (1.2.2)

where {r(t)} is the interaction forces on the interface at a specific time t which
is equal to the convolution integral of the unit-impulse response matrix of the un-
bounded domain [s∞(t)], and {u(τ)} the corresponding displacement vector (Wolf
and Song, 1996). Equation (1.2.2) is similar to the Duhamel integral that is widely
used in structural dynamics.

Usually, rigorous boundaries are defined by convolution integrals in the time
domain. Thus they are non-local in time i.e. the present response depends on the
previous time-history, and also non-local in space i.e. the future response of a degree
of freedom depends not only on its own previous time-history but on the previous
time-histories of all degrees of freedom on the boundary too. This can be described
by Fig. 1.2.2 using the physics of wave propagation. When a force R is applied at
node A on the discretized boundary, waves are generated, causing displacements (u1,
u2, ..., um, where m is the number of degrees of freedom) at all the other nodes on
the boundary. The displacement response of a degree of freedom at time tn (where
n is the time step) depends on not only the force Rn at the same time but also on
the forces at all previous time (i.e. t1 to tn−1).
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Figure 1.2.2: Spatial coupling of rigorous boundary

The non-locality in space leads to fully populated unit-impulse response matrices
at each time step. This leads to immense storage consumption when the number of
degrees of freedom is large. In addition, a convolution integral has to be evaluated
at each time step which yields unacceptable storage requirements for a long-time
simulation. Even though the substructure method usually provides high accuracy
and robustness in a numerical implementation, it is often computationally expen-
sive, especially for large-scale problems. This has led to the search of high quality
approximations that are local in space and time, that is, approximations that involve
only points in the neighborhood of the boundary point under consideration within
a small time-window (Kausel, 1988).

In the direct method, the numerical discretization, e.g. by the finite element
method, is truncated at a certain distance away from the structure (Fig. 1.2.3). To
represent the unbounded domain outside of the boundary, a boundary condition for-
mulated using local procedures has to be imposed on the discretized boundary. This
boundary condition is formulated to absorb waves propagating across the boundary
to the exterior unbounded domain. The discretized boundary with such a bound-
ary condition is known in various names such as artificial boundary, transmitting
boundary, absorbing boundary, non-reflecting boundary, open boundary etc. In this
thesis, the term “artificial boundary” is chosen as the general term.

As shown in Fig. 1.2.3, the bounded domain, including the structure, the irregular
soil and the part of the regular soil that is adjacent to the structure and enclosed
by the artificial boundary, is normally modeled with standard finite elements as
in the substructure method. In general, artificial boundaries are local in space
and time, and thus approximate. They are less accurate than rigorous boundaries.
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Nevertheless, they are numerically cheaper and more geometrically universal. In the
time domain, they can be directly formulated with time-step integration schemes.
Hence, the convolution integral, which is a computationally expensive task, is not
required in the direct method.

.

Artificial boundary

.

.

..
. .

.

.

.
.

.

Dam

.

Irregular soil

Soil-structure interface

Regular soil ∞

∞

∞

∞

Figure 1.2.3: Direct method

An artificial boundary can be illustrated by using the physics of wave propagation
in Fig. 1.2.4. When a force R is applied at node A on the boundary discretized
with two-node elements, waves are generated. It is assumed that the waves cause
displacements only within the elements connected to node A. The direct coupling
of the degrees of freedom is limited to the portion of the boundary modeled by one
element. To obtain the displacement response at a specified node at time tn, the
displacement responses of only nodes of the elements connected to it at only previous
time steps (tn−1 or tn−2 depending on the formulation of the boundary) are used.
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Figure 1.2.4: Spatial coupling of artificial boundary

The artificial boundaries do not perform well when they are placed too close to
the structure due to the spurious reflections occurring at the truncated boundaries
(Givoli, 1991). That means the radiation conditions are not satisfied. This is similar
to the example of the one-dimensional bar as described earlier in Fig. 1.1.2. In order
to avoid such a problem, those artificial boundaries must be placed sufficiently far
from the scatterer. However, this would result in a large computational domain
with a large number of degrees of freedom which increases the computational time.
Thus, artificial boundaries, which may be placed relatively close to or directly on
the embedded structure, are needed.

1.3 Global and local boundary conditions

Over the last four decades several approaches have been proposed formulating rigor-
ous and artificial boundary conditions for wave propagation problems in unbounded
domains. These approaches can basically be classified into two groups. The ap-
proaches in the first group are known as global procedures and those in the second
group are local procedures. The first group is highly accurate but cumbersome while
the second group is less accurate but algorithmically simple (Tsynkov, 1998).
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1.3.1 Global procedures

Global procedures are rigorous. They are described through integral operators with
respect to space or time. Due to their high accuracy, the rigorous boundaries con-
structed by these procedures can be placed as close as the structure. This leads
to the reduction of the number of degrees of freedom in the unbounded domain
which means the computational time also reduces due to the less amount of degrees
of freedom. However, as they are spatially and temporally global, a great deal of
data has to be processed. This results in an expensive computation, especially for
large-scale problems and long-time calculations.

Among the global procedures, the boundary element method (BEM) is well-
known as it has attracted a lot of attention from researchers for problems involv-
ing unbounded domains since 1970s (Brebbia, 1978; Dominguez, 1993; Hall and
Oliveto, 2003). There are two distinct benefits when using the BEM for modeling
unbounded domains. The former is that the radiation condition can be automati-
cally satisfied by the fundamental solution, and the latter is that only the boundary
of the soil-structure interface between the bounded domain (including the dam and
irregular soil) and the unbounded domain is discretized, thereby reducing the spa-
tial dimension by one. Even though the BEM is suited for modeling unbounded
domains, fundamental solutions are sometimes much more complicated to achieve
when anisotropic materials are used in the model. As a result, the BEM is unsuitable
for many practical engineering problems owing to its reliance on the fundamental
solution. Moreover, the coefficient matrices of the BEM are fully populated and
unsymmetric. This leads to expensive computations.

The thin-layer method (TLM) or the consistent method that is also a global
procedure. This approach was developed from the work of Lysmer in 1970 to solve
wave propagation problems in layered media with a rigid base (Lysmer, 1970). Since
then, this method has been developed continuously so that it can be applied to both
frequency-domain analysis (Lysmer and Waas, 1972; Waas, 1972) and time-domain
analysis (Kausel, 1994). The TLM is a semi-discrete numerical approach which is
based on the finite element formulation. The rigorous boundary constructed from
the TLM, also known as the consistent boundary, can be only applied on the vertical
discretized boundary of a layered medium which is the restriction of the TLM.

The scaled boundary finite element method (SBFEM) is a novel approach used
for modeling unbounded domains with arbitrary geometry (Wolf and Song, 1996;
Song and Wolf, 1997). This approach is based on the finite element formulation
but only the boundary is discretized. Thus the spatial dimension is reduced by one.
Furthermore, It can be coupled seamlessly with standard finite elements. Therefore
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it has the same advantages as similar as those of the BEM and the FEM. Moreover,
in case of modeling unbounded domains, the SBFEM can automatically satisfy the
radiation condition without any use of fundamental solution as required in the BEM.

Apart from these global procedures, there is another type of global procedures
which is of interest. These global procedures are known as exact non-reflecting
boundary conditions (exact NRBCs) which are based on analytical solutions for
unbounded domains with simple geometry and material properties, for example, the
exact NRBC of Keller and Givoli (1989) using the Dirichlet to Neumann (DtN)
map and the exact NRBC of Alpert et al. (2000) using the non-reflecting boundary
kernel.

These global procedures perform well in frequency-domain analyses, but in time-
domain analyses, they always require convolution integrals which result in a large
computational effort that is inappropriate for evaluating large practical problems.
This issue led to the developments of local procedures which are spatially and tem-
porally local.

1.3.2 Local procedures

Local procedures are formulated using differential operators with respect to space
and time. The boundary conditions on the artificial boundaries formulated from the
local procedures are generally approximate and based on the mathematical represen-
tation of wave propagation in order to absorb propagating waves. There have been
several existing artificial boundaries for simulating wave propagation in unbounded
domains developed by several researchers.

The first artificial boundary is the Lysmer-Kuhlemeyer boundary, which was
invented in 1969 (Lysmer and Kuhlemeyer, 1969). It is generally known as the
viscous boundary due to the viscous damping forces applied on the boundary. This
viscous boundary is a low-order transmitting boundary. It is very low accurate since
only first-order approximation is used in the formulation.

From the late 1970s to the mid-1980s, high-order absorbing boundary conditions
(high-order ABCs) were proposed. The accuracy of the solution obtained from the
high-order ABCs increases with increasing orders. Some of the high-order ABCs
became well-known such as the paraxial boundary condition (Engquist and Majda,
1977), the Bayliss-Turkel boundary condition (Bayliss and Turkel, 1980). These two
ABCs with second order became popular and are still commonly used today (Givoli,
2004).

However, from the implementation point of view, these high-order ABCs are
impractical when their orders are beyond second-order (Givoli, 2004). Since the
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mid-1990s, high-order local ABCs have been developed and overcome this problem
by introducing auxiliary variables (Hagstrom and Hariharan, 1998; Givoli and Neta,
2003; Hagstrom and Warburton, 2004). These high-order local ABCs are spatially
and temporally local. However, their applications are limited to unbounded domains
with simple geometry. Moreover, the extension to elastic wave propagation in un-
bounded domains with arbitrary geometry is not straightforward since the method
of separation of variables is not applicable.

In addition to these local procedures, there are three interesting local procedures
that have been developed in different ways such as the doubly asymptotic approxi-
mations (DAAs) (Geers, 1978; Geers and Lewis, 1997; Geers and Toothaker, 2000),
the infinite elements (Bettess, 1977; Astley and Eversman, 1983; Burnett, 1994)
and the perfectly match layers (Berenger, 1994; Sacks et al., 1995; Yu et al., 2003).
These local procedures are also used for absorbing propagating waves as well as the
absorbing boundaries. They are temporally local and can be implemented with the
finite element method or the finite difference method.

Recently, a new approach to constructing high-order transmitting boundary with
arbitrary geometry has been proposed by Bazyar and Song (2008). The transmitting
boundary is spatially and temporally local. The transmitting boundary condition is
expressed as a system of first-order ordinary differential equations in time to which
time-step integration schemes in structural dynamics are directly applicable. Most
of the existing high-order ABCs are singly asymptotic at the high-frequency limit
(ω → ∞) and only propagating modes are embodied in the formulation (Hagstrom
et al., 2008). Therefore, they are suited for propagating waves not evanescent waves.

Today there are plenty of work and research on local procedures which relate
to various fields such as acoustics, electrodynamics, hydrodynamics, geophysics,
aerodynamics etc.

1.4 Objectives

As mentioned in the previous section, most of the existing artificial boundaries are
singly asymptotic at the high-frequency limit (ω → ∞) and applicable to scalar
waves in homogeneous unbounded domains. To surpass these limitations, a new
approach has been developed and proposed in this thesis. The term “open boundary”
which means “free-space boundary” is chosen and used specifically for the artificial
boundaries developed in this thesis. The main objectives of the present research in
the thesis are as follows:
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1. To develop the theory of doubly asymptotic continued fraction solutions for
dynamic stiffness coefficients for the modal equations of scalar waves in a semi-
infinite layer with a constant depth and a circular cavity in a full-plane.

2. To construct the high-order doubly asymptotic open boundaries for the modal
equations of scalar waves in a semi-infinite layer with a constant depth and a
circular cavity embedded in a full-plane.

3. To construct the high-order doubly asymptotic open boundary for two- dimen-
sional acoustic wave propagation in a semi-infinite reservoir with a constant
depth by extending the scaled boundary finite element method.

4. To develop the coupling scheme of the scaled boundary finite element method
and the finite element method that is applicable to dynamic and seismic anal-
yses of large-scale structures e.g. dams with a semi-infinite reservoir.

5. To develop the theory of doubly asymptotic continued fraction solutions for
dynamic stiffness matrices for two-dimensional scalar wave propagation in a
homogeneous full-plane with a circular cavity and in a semi-infinite layered
system.

6. To construct the high-order doubly asymptotic open boundaries for two- di-
mensional scalar wave propagation in a homogeneous full-plane with a circular
cavity and in a semi-infinite layered system by extending the scaled boundary
finite element method.

7. To develop the theory of doubly asymptotic continued fraction solution for
dynamic stiffness matrices for two-dimensional vector wave propagation in a
homogeneous semi-infinite layer with a constant depth.

8. To construct the high-order doubly asymptotic open boundary for two- di-
mensional vector wave propagation in a homogeneous semi-infinite layer with
a constant depth by extending the scaled boundary finite element method.

This thesis aims at developing the theory of the doubly asymptotic continued frac-
tion solutions and also constructing the high-order doubly asymptotic open bound-
aries for unbounded domains which can improve the high-order singly asymptotic
open boundary (the existing open boundary). The proposed open boundaries can
be employed not only in the geotechnical engineering, but also in other disciplines
such as acoustics, aeronautics, electromagnetics, hydrodynamics, etc. The proposed
open boundaries are of the following characteristics and properties:
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1. The open boundary conditions are based on high-order approximation, and
developed from the extension of the scaled boundary finite element method.

2. The open boundaries are doubly asymptotic i.e. the approximation approaches
the exactness at both high-frequency limit (ω → ∞) and low-frequency limit
(ω → 0).

3. The approximation technique of continued fraction, which is similar to the
rational function and the Padé expansion, is employed in the derivation of the
continued fraction solution for dynamic stiffness since it has a large range of
convergence, and also converge rapidly with high accuracy.

4. The open boundary conditions are constructed as systems of first-order ordi-
nary differential equations in time by introducing auxiliary variables. Standard
time-step integration schemes are applicable to transient analyses.

5. The open boundaries are applicable to wave propagation in homogeneous semi-
infinite layers with a constant depth, semi-infinite layered systems and homo-
geneous full-planes with a circular cavity.

6. The open boundaries are practical in implementation, and can be coupled with
finite element schemes in the time domain.

7. The open boundaries are temporally local.

1.5 Thesis outline

The outline of the thesis are as follows:
In Chapter 2, the literature review of the existing boundaries i.e. rigorous bound-

aries and artificial boundaries that are employed for wave propagation problems in
unbounded domains are summarized. The key equations of the existing boundaries
are expressed, and the key figures are shown. The history of development of each
approach is described, and the advantages and disadvantages are also discussed.

In Chapter 3, the doubly asymptotic continued fraction solutions for modal dy-
namic stiffness coefficients are derived for a semi-infinite layer with constant depth
and a circular cavity embedded in a full-plane. Also, the high-order doubly asymp-
totic open boundary conditions in the time domain for the modal equations of scalar
waves are formulated. The accuracy of the doubly asymptotic open boundaries is
evaluated and compared with that of the singly asymptotic open boundary in the
numerical examples. The results are summarized in the conclusions.
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In Chapter 4, the SBFEM is extended to acoustic wave propagation. The scaled
boundary finite element equation in pressure is derived for the far-field water in
the reservoir. The derivation of the doubly asymptotic continued fraction solution
for modal dynamic stiffness coefficients is also described. The high-order doubly
asymptotic open boundary condition in the time domain is then formulated and
the coupling scheme with finite elements are established. Numerical examples are
provided and the results are summarized in the conclusions.

In Chapter 5, the scaled boundary finite element equation in displacement of a
full-plane with a circular cavity is derived for scalar wave propagation. The numeri-
cal stability of the doubly asymptotic continued fraction solution for modal dynamic
stiffness coefficients is improved by introducing the factor coefficients to the contin-
ued fraction solution. The high-order doubly asymptotic open boundary condition
in the time domain is formulated. Numerical examples are provided and the results
are summarized in the conclusions.

In Chapter 6, the scaled boundary finite element equations in displacement and
in dynamic stiffness of a semi-infinite layered system are derived for scalar wave
propagation. The doubly asymptotic continued fraction solution for dynamic stiff-
ness matrix is derived with the introduction of the factor matrices to improve the
numerical stability of the solution. The high-order doubly asymptotic open bound-
ary condition in the time domain is formulated. Numerical examples are provided
and the results are summarized in the conclusions.

In Chapter 7, the scaled boundary finite element equations in displacement and
in dynamic stiffness of a semi-infinite layer with a constant depth are derived for
vector wave propagation. The doubly asymptotic continued fraction solution for
dynamic stiffness matrix is derived with the introduction of the factor matrices to
improve the numerical stability of the solution. The high-order doubly asymptotic
open boundary condition in the time domain is formulated. Numerical examples are
provided and the results are summarized in the conclusions.

In Chapter 8, all the works in the research are summarized, and the possible
works in the future research are recommended.
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Chapter 2

Literature Review

2.1 Introduction

As mentioned in Chapter 1, several approaches have been developed for modeling
unbounded domains over the last four decades. They can be classified into two
groups: global and local procedures. In this chapter, the literature review of the
global and local procedures is presented. The history of development of both pro-
cedures is described. The advantages and disadvantages of the procedures are also
discussed. Only the key equations and figures of the procedures are expressed and
illustrated.

This chapter is organized as follows: in Section 2.2, the global procedures, in-
cluding the boundary element method, the thin-layer method, the scaled boundary
finite element method, exact non-reflecting boundaries and temporally local exact
non-reflecting boundaries are summarized. In Section 2.3, the local procedures, in-
cluding low-order, high-order and local high-order absorbing boundary conditions,
doubly asymptotic approximations, infinite elements and absorbing layers are sum-
marized. In Section 2.4, the capacity of commercial finite element packages used
for modeling unbounded domains is discussed. In Section 2.5, the conclusions are
presented.

2.2 Global procedures

Global procedures often lead to rigorous boundary conditions. The rigorous bound-
ary condition can be placed very close to the structures. This leads to the reduction
of the size of the bounded domain which is necessary to obtain accurate responses,
and thereby the computational time. However, the rigorous boundaries obtained
from the global procedures are spatially and temporally global. The amount of
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data to be processed increases rapidly with the number of time steps due to the
convolution integrals. This results in high computational cost for long-time analy-
ses such as those required in earthquake engineering. Hence, the global procedures
are impractical for large-scale structures subjected to earthquakes. Common global
procedures include the boundary element method (see Section 2.2.1), the thin-layer
method (see Section 2.2.2), the scaled boundary finite element method (see Section
2.2.3), exact non-reflecting boundaries (see Section 2.2.4) and temporally local exact
non-reflecting boundaries (see Section 2.2.5).

2.2.1 Boundary element method

The boundary element method (BEM) is illustrated by its application to solve the
Laplace equation, which is one of the best known partial differential equations in
engineering.

∇2φ = 0 (2.2.1)

where φ is a potential function, the symbol ∇ called nabla denotes the gradient of a
function in calculus. In the past, several mathematicians and scientists studied and
performed their research on potential problems and established the potential theory
(Kellogg, 1929). They solved the potential problems by posing them as boundary
value problems i.e. imposing boundary conditions e.g. the Dirichlet boundary con-
dition, the Neumann boundary condition, etc. on the boundary Γ enclosing a region
Ω. The solution of the governing differential equations (the Laplace equation in
this case) of a free space under the action of a point source is called a fundamental
solution.

The boundary element method (BEM) arises from the potential problems. The
most important work presented by Green (1828) considerably contributed to the
BEM at the early age. He proposed the three Green’s identities. The first identity
obtained from the divergence theorem is expressed as∫∫∫

Ω

(φ∇2ψ + ∇φ · ∇ψ)dΩ =

∫∫
Γ

φ
∂ψ

∂n
dΓ (2.2.2)

where ψ is also a potential function, and ∂ψ
∂n

is the directional derivative of ψ in the
direction of the outward normal vector �n of the boundary Γ. The second identity
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obtained from using the first identity is expressed as∫∫
Ω

(φ∇2ψ − ψ∇2φ)dΩ =

∫∫
Γ

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dΓ (2.2.3)

By substituting the Green’s function 1
r

which is a fundamental solution into ψ in
the second identity, the third identity is obtained as

φ =
1

4π

∫∫
Γ

[
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

]
dΓ (2.2.4)

which is exactly the formulation of the present-day BEM for potential problems.
A common feature of all BEMs is their use of fundamental solutions. The earliest
fundamental solution for isotropic elastostatics was derived by Thomson (1848),
later known as Lord Kelvin. It was used for solving the problem of a point force
applied to the interior of an infinite isotropic solid. In elastodynamics, the first
fundamental solution in the frequency domain was given by Stokes (1849), and in
the time domain solution was presented by Eringen and Suhubi (1975). Besides the
potential theory, the works of Betti (1873), Somigliana (1885), Kupradze (1963) and
others in elasticity also contributed to the development of the BEM at its early age.

The works of Jaswon (1963) and Symm (1963) are considered as a very crucial
contribution that inspired later researchers of the BEM. In their works, Jaswon and
Symm have developed the direct boundary integral equation method (BIEM) using
Green’s boundary formula (or Green’s third identity) as expressed in Eq. (2.2.5) for
two-dimensional potential problems.

1

2π

∫
ln|P − q|φ′(q)dq − 1

2π

∫
ln|P − q|′φ(q)dq = φ(P ) (2.2.5)

where P and q are the points on the boundary, φ(P ) a harmonic function throughout
a domain D, φ(q) boundary values, and φ′(q) boundary normal derivatives. Jaswon
and Ponter (1963) and Symm (1963) solved the boundary integral equation (BIE)
numerically and successfully. A few years later, Rizzo (1967) and Cruse (1969)
developed BIE approaches for two- and three-dimensional elastostatic problems,
and also extended the approaches to transient elastodynamics (Cruse and Rizzo,
1968; Cruse, 1968) using a fundamental solution and the vectorial form of Betti’s
theorem (the reciprocal work theorem). This yielded a vector identity in Laplace
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transform domain,

uj(p) =

∫
Γ

ti(q)u
∗
ji(q, p)dΓ −

∫
Γ

ui(q)t
∗
ji(q, p)dΓ +

∫
Ω

Fi(q)u
∗
ji(q, p)dΩ (2.2.6)

which corresponds to Somigliana’s identity (in elastostatics) and Green’s third iden-
tity (in potential theory), where p is an interior point or load point, q is any point
on the boundary (field point), uj(p) is the displacement, ti(q) is the traction force,
u∗

ji(q, p) is the fundamental solution, t∗ji(q, p) is the boundary traction vector of the
fundamental solution, and Fi(q) is the body load. In the time domain, they obtained
the results by employing the numerical inversion technique of Papoulis (1957). Since
the BIEM is derived in the Laplace transform domain, the drawback of this approach
is the difficulty in transform inversion. If the BIEs are expressed in the time domain,
they contain convolutions in time. The solution of geometrically complex problems
through the use of time convolution is very computationally expensive. Therefore,
neither Laplace-transformed nor time-convolved BIEs are suitable for use in practi-
cal transient elastodynamics analysis.

Lachat and Watson (1976) made a significant contribution to the numerical im-
plementation of the BIEM by incorporating an isotropic formulation which was
similar to that used in the FEM into the BIEM. The sub-regions were introduced
to handle large-scale problems and algorithms were described for the computation
of the weakly singular and quasi-singular integrals that appeared in the BIEs. This
work was considered as the first-published work that incorporated the FEM idea
into the BIEM.

An algorithm for the computation of the Cauchy principal value integrals result-
ing from the strong singularity of the traction fundamental solution was presented by
Guiggiani and Gigante (1990). The term “boundary element method” was coined in
1977 in three publications (Banerjee and Butterfield, 1977; Brebbia and Dominguez,
1977; Dominguez, 1977), and in the following year, the first book on the BEM was
released (Brebbia, 1978). The BEM presented by Brebbia and Dominguez (1977)
is based on the weighted residual formulation. The weight function is assumed to
be the fundamental solution. In the case of the Laplace equation, they used 1

4πr
as

the weight function, and also imposed the Dirichlet boundary condition φ = f(x)

and the Neumann boundary condition ∂φ
∂n

= g(x) on the boundaries Γ1 and Γ2,
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respectively. This led to the weighted residual formulation,

φ =
1

4π

∫∫
Γ1

f(x)
∂(1/r)

∂n
dΓ − 1

4π

∫∫
Γ1

1

r

∂φ

∂n
dΓ +

1

4π

∫∫
Γ2

φ
∂(1/r)

∂n
dΓ − 1

4π

∫∫
Γ2

1

r
g(x)dΓ

(2.2.7)

Since the early 1980s, a surge in research activities on the BEM has occurred,
and an increasing number of problems in structural mechanics including material
and geometric non-linearities have been treated. Also, the range of applications was
extended to other fields of mathematical physics such as electrodynamics and fluid
mechanics. Today the BEM is known as one of the numerical methods based on the
weighted residual formulation of which the weight function used is the fundamental
solution (Green’s function) of the governing equation. A key to the success of the
BEM is the reduction of spatial dimension by one (i.e. transformation of the volume
integrals into surface integrals for three-dimensional problems, or transformation
of the surface integrals into line integrals for two-dimensional problems), thereby
reducing the data preparation and computational time. Figure 2.2.1 illustrates the
spatial discretization on the boundary Γ of the computational domain Ωi by the
BEM to represent the unbounded domain Ωe.

Γ

Ωi
Ωe

+∞

Discretized
boundary

Figure 2.2.1: Spatial discretization by BEM for unbounded domain

Even though the BEM is a useful method for wave simulation in stratified media
with irregular interfaces, the computational time increases exponentially as the num-
ber of layers increases. Hence, researchers proposed their own approaches to solve
such a problem. For example, Bouchon et al. (1995) introduced a sparse method
to reduce the numerical task. Fu (2002) proposed an improved block Gaussian
elimination scheme to tackle the problems of wave propagation in a heterogeneous
layered medium system. Fu and Bouchon (2004) also provided some approximation
solutions. Ge and Chen (2008) employed an efficient approach to solve the global
matrix propagators (introduced by Ge and Chen (2007) to improve the efficiency of
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the BEM) directly, and the calculation of the matrix propagator of each single layer
was omitted.

2.2.2 Thin-layer method

A well-known rigorous method apart from the BEM is the thin-layer method (TLM).
The TLM is a semi-discrete numerical approach as it is based on a finite-element
solution in the direction of layering (the vertical direction) while exact solutions are
enforced on the remaining direction (the horizontal direction). The TLM requires
relatively small computational effort in comparison with other full-discretization
methods, such as the finite difference and finite element methods, provided that the
medium is sufficiently regular in the horizontal direction that analytical solutions can
be found. The vertical boundary discretized by the TLM is known as the consistent
boundary as illustrated in Fig. 2.2.2. The consistent boundary represents the entire
layered medium that extends to infinity in the horizontal direction.

Rigid base

Free surface

Consistent
boundary

Layer 2

Layer 1

Layer n

....

+∞

Figure 2.2.2: Consistent boundary generated by thin-layer method

The TLM was originally developed by Lysmer (1970) to study the propagation of
seismic Rayleigh waves in layered earth strata. It was further substantially developed
by Waas (1972). The characteristic equations (Eq. (2.2.8)) were obtained directly
from a variational formulation, not from a limiting process to a finite element mesh
as Lysmer had done. The original equation of the TLM was formulated in the
frequency domain as

([A]k2 + [B]k + [G] − ω2[M ]){U} = {P} (2.2.8)

where k denotes the wave number, {U} is the displacement vector, {P} is the
prescribed load vector, and [A], [B], [G] and [M ] are narrowly banded matrices that
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depend on the material constants and layer thickness. Only [B] is skew-symmetric
while the other matrices are symmetric. This [B] exists in the in-plane case (SV −P

waves), but vanishes for the anti-plane case (SH waves).
The concept of a consistent energy transmitting boundary for layered strata

proposed by Waas (1972) was extended by Kausel and Roesset (1977) in order to
develop the hyperelement for plane-strain problems. The hyperelement is based on
the same semi-analytical formulation of the TLM, and also known as the consistent
boundary, representing a frequency-dependent force-displacement relation on the
discretized boundary. Consequently, it can be used only in the frequency-domain
computations. It is, therefore, restricted to the analysis of linear system and cannot
be employed to study non-linear problems using time-step integration techniques.

In the early 1980s, Tajimi (1980), Waas (1980) and Kausel (1981) independently
arrived at the closed-form solutions (Green’s functions) for elastodynamic problems
employing the TLM. Tajimi (1980) investigated the dynamic stiffness of surface
foundations, considering only point loads. Waas (1980) considered point and ring
loads, using cylindric expansions for the displacement field in the radial direction,
and enforcing equilibrium and continuity conditions within the soil. Among these
three, Kausel (1981) provided the most general framework for handling loads with
arbitrary spatial-temporal characteristics via Fourier and Hankel transforms, and
included detailed expressions on the consistent stresses and strains. Extending this
work, Kausel and Peek (1982b) derived the Green’s functions of point loads, which
had become the core of several computer programs such as PUNCH, SASSI, SASW,
etc, and also procedures for the analysis of wave propagation in layered media.
These Green’s functions allowed the application of the TLM to the BEM to study
laminates with irregularities e.g. cavities or inclusions (Kausel and Peek, 1982a).
Afterwards, Kausel (1999) presented the Green’s functions for a class of dynamic
point sources acting on, or within, laminated media. The set of the point sources
that was considered included force dipoles (e.g. cracks, point moments, single and
double couples), blast load and bimoments (or moment dipoles).

The Green’s functions in the wavenumber domain are algebraic rather than tran-
scendental. Therefore, the Hankel transforms required for an evaluation of the
Green’s functions in the spatial domain can be readily computed in closed forms.
In the classical implementation, the Green’s functions of layered media are obtained
by the following steps: (1) formulating the equations of motion in the frequency-
wavenumber domain, (2) solving a complex-valued quadratic eigenvalue problem in
the wavenumbers, (3) integrating analytically over wavenumbers, and (4) integrating
numerically over frequencies by means of the fast Fourier transform.
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For the TLM formulated in the time domain, Kausel (1994) first succeeded in
formulating it. This formulation is not only able to avoid the use of complex algebra
and error-prone inverse Fourier transforms, but also allows the Green’s functions
to be obtained directly in the time domain. In this approach, a linear real-valued
eigenvalue problem in the frequency variable is solved first, and then an analytical
integration must be carried out over frequencies. Finally, a numerical transform is
performed over wavenumbers.

Park and Kausel (2004) investigated the numerical dispersion of the TLM for
both linear and quadratic expansions applying the exact solution to the spectrum
equation for the discrete wave equation. Such a numerical dispersion occurs due
to the spatial discretization when an elastic medium is modeled by the TLM. This
numerical dispersion can slightly alter the paths and also the velocities of waves.
This results in a discrepancy between the solutions for the discrete and continuous
models. They first characterized the numerical dispersion for SH and SV − P

waves in an unbounded domain. Then they developed optimal tuning factors used
for minimizing the numerical dispersion error.

In case of anisotropic layered media, the TLM was also extended and studied
by Kausel (1986). Within each sublayer, the material properties were assumed to
be homogeneous, and would probably change from sublayer to sublayer. Waas and
Hartmann (1988) also employed the TLM with explicit Green’s functions for arbi-
trary ring loads to inhomogeneous layered media of which shear modulus increased
linearly with depth. Apart from anisotropic and inhomogeneous layered media, the
TLM formulated in the wavenumber-time domain was extended to inhomogeneous
piezo-composite layered media (Chakraborty et al., 2005). The material proper-
ties were allowed to vary in the depthwise direction only. Linear and exponential
variations of elastic and electrical properties were both considered.

Park and Kausel (2006) employed the TLM formulated in the wavenumber-time
domain to a homogeneous layer underlain by an elastic half-space in two dimensions.
An impulsive, spatially harmonic SH source was considered in the homogeneous
layer and the elastic half-space below the common interface independently. They
proposed an approach which was based on combining the exact expressions for the
response in the underlying half-space formulated in the wavenumber-time domain
with a complete modal solution in that domain for the layers. The approach can
avoid the computational problems associated with resonances in the layers. Kausel
and Park (2006) also generalized the concept to two-dimensional SV −P line sources
and to three-dimensional point sources, including seismic couples.
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2.2.3 Scaled boundary finite element method

The novel scaled boundary finite element method is a fundamental solution-less
boundary-element method based on finite elements, which combines the advantages
of the boundary-element and finite element methods. This method was originally
developed for two-dimensional scalar waves in unbounded domains (Song and Wolf,
1995), and was called the consistent infinitesimal finite-element cell method, reflect-
ing the mechanically based derivation analogous to the early work in finite elements
(Wolf and Song, 1996).

The concept is that a finite element cell with the exterior boundary similar to the
interior one is introduced in the radial direction adjacent to the structure-medium
interface. The relationship based on similarity and the limit of the infinitesimal
cell width approaching zero leads to the consistent infinitesimal finite-element cell
equation in dynamic stiffness of an unbounded domain in the frequency domain. For
the consistent infinitesimal finite-element cell equation in acceleration unit-impulse
response in the time domain, it is obtained from applying the inverse of Fourier trans-
form to the equation in the frequency domain. This approach was later extended to
two-dimensional vector waves (Wolf and Song, 1995) and three-dimensional vector
waves (Song and Wolf, 1996).

Soon after, the procedure was rederived and renamed as the scaled boundary
finite element method (SBFEM), starting from the governing partial differential
equations of linear elastodynamics applying the weighted residual technique (Song
and Wolf, 1997). The derivation is mathematically more appealing and is consistent
with the finite element formulation. Only the boundary of the domain is discretized
as surface finite elements, thereby reducing the spatial dimension by one. Although
this method discretizes only the boundary as well as the BEM, it does not require
fundamental solutions as the BEM does. This method is also a semi-analytical
approach since the equilibrium equation is enforced exactly in the radial direction,
and converges to the exact solution in the finite-element sense in the circumferential
direction. In addition, the radiation condition or the boundary condition at infinity
is satisfied rigorously.

The basic concept of employing the SBFEM for modeling an unbounded domain
is illustrated in Fig. 2.2.3 i.e. a scaling center O must be chosen in a zone from which
the total boundary S is visible. Without losing generality, the origin of the Cartesian
coordinates (x̂, ŷ) is selected at the scaling center O. The boundary S is discretized
into one-dimensional line elements. The geometry of an element on the boundary
is interpolated using the shape functions formulated in the local coordinate η in
the same way as that in the FEM. The geometry of the domain V is described by
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scaling the boundary with the dimensionless radial coordinate ξ pointing from the
scaling center O to a point on the boundary. The value of ξ is specified as 0 at the
scaling center O and 1 at the boundary S. The unbounded domain is thus specified
by 1 ≤ ξ ≤ ∞. The radial coordinate ξ and the circumferential coordinate η form
the scaled boundary coordinates.

(a)

ξ=
1

ξ 
>

1

(b)
η-1 0 +1

1 3 2

Figure 2.2.3: Scaled boundary finite element method: (a) spatial discretization of
two-dimensional unbounded domain and (b) three-node line element

Along the radial lines passing through the scaling center O and a node on the
boundary S, the nodal displacement functions are introduced. The shape functions
are employed in the circumferential direction to interpolate the displacement func-
tions piecewisely. The governing differential equations are expressed in the scaled
boundary coordinates. The Galerkin’s weighted residual method or the principle of
virtual work is applied to the governing differential equations in the circumferential
direction η to obtain the scaled boundary finite element equation in displacement
(the Euler-Cauchy ordinary differential equation with the radial coordinate ξ as an
independent variable).

The coefficient matrices of this scaled boundary finite element equation are calcu-
lated and assembled in the same way as the static-stiffness and mass matrices in the
finite element method are. For a static analysis, the scaled boundary finite element
equation is transformed into a system of first-order ordinary differential equations
which can be solved as an eigenvalue problem. Thus, the displacement and stress
fields are described by semi-analytical solutions permitting the boundary condition
at infinity to be satisfied rigorously.

The scaled boundary finite element equation can also be expressed in dynamic
stiffness with the frequency as the independent variable. It is a system of non-linear
first-order ordinary differential equations to be solved numerically for the dynamic-
stiffness matrix. The radiation condition at infinity is satisfied using an asymptotic
expansion of the dynamic-stiffness matrix for high frequency. Applying the inverse

25



Fourier transform to the scaled boundary finite element equation in dynamic stiffness
leads to the scaled boundary finite element equation in the time domain involving
convolution integrals. The time-discretization method is used to solved the scaled
boundary finite element equation in the time domain.

The original equation of the SBFEM is based on the Galerkin’s weighted residual
method which was later extended to model body loads (Song and Wolf, 1999). For
certain distribution of body loads, the concentrated loads and loads varying as power
function of radial coordinate, analytical solutions were derived. Deek and Wolf
(2002b) rederived the scaled boundary finite element equations using the principal
of virtual work. The original solution of the SBFEM for elastostatics uses eigen-
decomposition which breaks down when problems involve logarithmic functions. To
tackle this problem, Deek and Wolf (2002a, 2003) extended the SBFEM by adding
the results of the eigen-decomposition with additional logarithmic terms associated
with the translational motions.

Doherty and Deeks (2003c) presented an axisymmetric formulation of the SBFEM
for the static analysis of a non-homogeneous elastic half-space. The Young’s modu-
lus was assumed to vary with depth. The rigid and flexible footings were tested on
the elastic half-space under pure vertical load. Doherty and Deeks (2003b) presented
a virtual work formulation of the SBFEM to elastostatic problems involving an ax-
isymmetric domain subjected to a general load, extending the work of Deek and Wolf
(2002b), and Doherty and Deeks (2003c). A Fourier series was used to model the
variation of displacements in the circumferential direction of the cylindrical coordi-
nates, and the non-homogeneous elasticity was included. Doherty and Deeks (2003a)
determined the dependence of the dimensionless stiffness coefficients and the dimen-
sionless torsional stiffness coefficient by evaluating the load-displacement response of
rigid circular footings embedded in a non-homogeneous elastic half-space. The foot-
ings were subjected to vertical, horizontal, moment and torsion loads. The SBFEM
for axisymmetric non-homogeneous unbounded domains presented by Doherty and
Deeks (2003b) was adopted.

Song (2004a) developed a novel solution procedure for statics based on the the-
ory of matrix power functions and block-diagonalized Schur decomposition. This
Schur decomposition is more advantageous than the eigen-decomposition from the
numerical and analytical point of view. Choosing the block-diagonalized Schur de-
composition leads to well separated eigenvalues. This results in weighted orthogonal
base functions. Song (2004a) used the scaling and squaring method based on Padé
approximation to calculate the matrix power functions. The matrix power function
solution is capable of accurately evaluating not only logarithmic functions but also
the transition between the power functions and logarithmic functions.

26



Vu and Deeks (2006) investigated high-order elements in the SBFEM for stat-
ics. The spectral element and hierarchical approaches were examined. Lagrange
shape functions were used in the spectral element approach. In the hierarchical
approach, higher-derivative-based shape functions and Lobatto polynomials were
adopted. They found that the spectral element approach performed better than the
hierarchical approach.

The computational efficiency of static and dynamic analyses of large-scale un-
bounded domains using the SBFEM was increased significantly by adopting a tech-
nique called the reduced set of base functions in the frequency domain (Song, 2004b,
2006). Such base functions [Ψ] are weighted block-orthogonal and obtained from the
Schur decomposition of the coefficient matrix [Z] of which the real Schur form ma-
trix [S] is block-diagonal. The eigenvectors that correspond to the smallest absolute
values of the real parts of the eigenvalues (the diagonals of the Schur form matrix)
are selected as the reduced set of base functions. This technique approximates the
degrees of freedom on the unbounded domains by using a smaller number of general-
ized coordinates. The scaled boundary finite element formulation with the reduced
set of base functions is regarded as a spatially local formulation since the responses
at different locations are coupled by the generalized coordinates only. The size of
the system of equations is thus reduced to the number of the base functions retained
in the reduced set.

Since the computational time and storage for calculating the reduced set of base
functions is the most time-consuming part of a scaled boundary finite element anal-
ysis of wave propagation problems in large-scale unbounded domains, the sparsity
of the coefficient matrices was explored by Song and Bazyar (2008) to reduce the
computational time and storage. Moreover, Song and Bazyar (2008) developed an
approach for lumped coefficient matrices for [E0] and [M0] using the Gauss-Lobatto-
Legendre shape functions together with nodal quadrature for wave propagation prob-
lems in unbounded domains. This development leads to a formulation based on use
of high-order elements. Earlier, this type of high-order element was successfully
applied to the scaled boundary finite element method for statics by Vu and Deeks
(2006).

Song and Bazyar (2007) proposed an approximate method of determining a dy-
namic stiffness matrix of an unbounded domain in the frequency domain. A Padé
series is used for the regular term of the dynamic stiffness matrix due to its good
properties: it converges more rapidly; it has a much larger range of convergence
than the corresponding power series expansion does. The Padé series is constructed
directly from the high-frequency expansion obtained from the scaled boundary finite
element equation. Unlike the method proposed in Ruge et al. (2001) where a Padé
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series or approximation is constructed by a least square approximation of the dy-
namic stiffness matrix pre-determined by other methods at discrete frequencies, this
approach does not require the explicit evaluation of the dynamic stiffness matrix.
Therefore, the computationally expensive task of calculating the dynamic stiffness
matrix at discrete frequencies is avoided.

Recently, Bazyar and Song (2008) have developed a high-order transmitting
boundary for wave propagation in unbounded domains by extending the SBFEM.
The scaled boundary finite element equation in dynamic stiffness and the technique
of continued fraction were used in the derivation of the continued fraction solution
in the frequency domain. A continued fraction is closely related to a Padé series
(Baker and Graves-Morris, 1996), having a large range of convergence and the higher
rate of convergence compared to that of the corresponding power series.

2.2.4 Exact non-reflecting boundaries

Another global procedure developed for wave propagation problems in unbounded
domains is the exact non-reflecting boundaries. The boundary conditions of the
exact non-reflecting boundaries are theoretically exact, and most of them involve
integral transforms along the boundary and pseudo-differential operators. Ting and
Miksis (1986) developed an exact boundary for scattering problems in uniform un-
bounded domains. The condition on the boundary is based on Kirchhoff’s formula
in the framework of time explicit integration. The integral in the formula is evalu-
ated on the surface containing the scatterer, lying inside of the finite computational
domain. Since the integrand only depends on the retarded values, the formula is
exact and explicit. The non-reflecting boundary condition (NRBC) of Ting and
Miksis was later implemented by Givoli and Cohen (1995). This approach is, how-
ever, computationally expensive since a convolution in space and time is required to
update the solution at the points on the boundary.

Keller and Givoli (1989) and Givoli and Keller (1989) developed and proposed
exact non-reflecting boundaries of simple shapes e.g. a circle in two dimensions, and
a sphere in three dimensions for converting boundary-value problems defined over
unbounded domains to formulations that are suitable for a numerical analysis. The
boundary condition imposed on the truncated boundary is called the Dirichlet-to-
Neumann (DtN) boundary condition, which is expressed as

uv = −Mu (2.2.9)
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where uv denotes the outward normal derivative of displacement, M is a non-local
operator called the Dirichlet to Neumann (DtN) map, and u is the unknown dis-
placement field. The way to find out the DtN boundary condition is to solve the
Dirichlet problem in the external domain. For example, in case of a circle of ra-
dius R, the DtN boundary condition is expressed in terms of the following explicit
equation:

uv(R, θ) = −
∞
′∑

n=0

∫ 2π

0

mn(θ − θ′)u(R, θ′)dθ′ (2.2.10)

which is an infinite series with the DtN kernels,

mn(θ − θ′) = −k

π

H
(1)′
n (kR)

πH
(1)
n (kR)

cos (n(θ − θ′)) (2.2.11)

where k is the wave number in the Helmholtz equation, and H
(1)
n is the Hankel

function of first kind. The prime after the sum indicates that the term with n = 0 is
multiplied by a factor of 1/2. In the implementation with finite elements, the DtN
boundary conditions converge at the convergence rate of the standard finite elements,
and the non-locality of the boundary condition had no effect on the banded structure
of the finite element matrix.

The DtN boundary condition was later extended to treat the hyperbolic linear
wave equation by Givoli (1992b), and was further analyzed and improved by Harari
and Hughes (1992a,b) for acoustics. For practical applications, the DtN map must
be truncated, and only a specified number of leading terms of the infinite series are
taken into account. Grote and Keller (1995b) modified the DtN boundary condition
for the Helmholtz equation. Such modification was able to remove the difficulties
caused by the real eigenvalues that occurred when the DtN boundary condition was
truncated. They also proposed the DtN and the modified DtN boundary conditions
of elliptic and spheroidal coordinates.

A few years later, Harari et al. (1998) derived the DtN boundary conditions for
unbounded acoustic waveguides in two and three dimensions. The cross-sectional
eigenvalues μ2

n and the orthogonal eigenfunctions Yn(y) for two dimensions and
Yn(x, y) for three dimensions were introduced in the formulation of the DtN bound-
ary condition. The eigenvalues and eigenfunctions were obtained from the method
of separation of variables and modal decomposition techniques. To validate the
performance of the DtN boundary conditions, they compared the numerical results
obtained from the truncated DtN and modified DtN boundary conditions. They
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concluded that the truncated and modified DtN boundary conditions performed
similarly as long as there were sufficient terms for the truncated boundary condition
to yield unique solutions, otherwise the modified boundary condition was superior
to the truncated boundary condition.

Tsynkov (1998) also derived an exact non-reflecting boundary based on the appli-
cation of the difference potential method (DPM) for steady-state flow computations.
The boundary condition is not only geometrically universal, but also easy to incor-
porate into the structure of the existing flow solvers. However, the extension to
the formulation in the time domain is not straightforward. Most of the exact non-
reflecting boundaries were developed in the frequency domain. Only a few of them
were formulated in the time domain. Guddati and Tassoulas (1998a,b) proposed
the characteristic method for constructing exact non-reflecting boundaries for scalar
wave propagation in homogeneous unbounded domains, including half space, full
space and a layer. The method is based on the method of separation of variables,
a dimensional reduction technique, involving the following three steps: (a) utilizing
semidiscretization to reduce the governing partial differential equation (PDE) into
a system of hyperbolic PDEs in a single spatial variable and time, (b) splitting the
displacement vector into wave modes which satisfy the scalar dispersive wave equa-
tion, and (c) solving the resulting scalar equation on the characteristic grid. The
third step is the key to the efficiency of this method. In the space-time domain, the
solution facilitates an element-by-element solution, and the elements are processed
in the order using a cell-centered finite-difference scheme. The boundary condition
obtained from this method is spatially global but temporally pseudo-local as the
past history is stored in a different form with the displacement vector that is stored
along the characteristics.

Alpert et al. (2000) developed an exact non-reflecting boundary condition used
for spherical and cylindrical boundaries, and two years later, the boundary condition
was extended to planar boundaries (Alpert et al., 2002). The boundary conditions
are non-local in space and time due to the convolution term in the formulation. In the
implementation, the boundary conditions can be coupled to finite-difference solvers
for the scalar wave equation. The fundamental analytical tool that they employed
is the non-reflecting boundary kernel, which is the inverse Laplace transform of the
logarithmic derivative of a Hankel function. They adopted a ratio of polynomials
of modest degree to approximate the logarithmic derivative of a Hankel function so
that the inverse Laplace transform of the derivatives could be expressed as a sum of
exponentials. The non-reflecting boundary kernel is similar to the non-dimensional
residual function previously used by Geers (1969, 1971, 1972). In order to reduce
the amount of work needed to apply the exact condition, the compression technique
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was adopted to compress non-reflecting boundary kernels. The proposed approach
is effective when long-time integrations are required. Nevertheless, the propagation
media must be uniform at the boundary. The proposed technique is unable to treat
wave problems in infinite-layered media.

From the viewpoint of practical computing, the exact non-reflecting boundaries
may be cumbersome for implementation, and computationally expensive owing to
their non-localities. In addition, they impose geometric restrictions that limit their
practical use. However, some types of exact non-reflecting boundaries which are
very rare for global procedures can be formulated in the time domain without any
use of convolution integrals and can be implemented with finite elements. Those
boundaries are thus local in time and reviewed in the next section.

2.2.5 Temporally local exact non-reflecting boundaries

2.2.5.1 Grote-Keller boundaries

The exact non-reflecting boundary condition (exact NRBC) developed by Grote
and Keller (1995a) was formulated for the time-dependent wave equation in three
dimensions. On a sphere of radius a, and the formulation is expressed as

(
∂

∂r
+

∂

∂t
)[ru] = −1

a

∞∑
n=1

n∑
m=−n

Ynm(θ, ϕ){(−1)n

n∑
j=1

jγnj

aj

dn−jwnm(t)

dtn−j
} (2.2.12)

where γnj = (n+j)!
(n−j)!j!2j and Ynm(θ, ϕ) is the nmth spherical harmonic normalized over

the unit sphere which is expressed as

Ynm(θ, ϕ) = [(2n + 1)(n − |m|)!/4π(n + |m|)!]1/2eimϕP |m|
n (cosθ) (2.2.13)

where P
|m|
n is associated Legendre function and the auxiliary variable wnm(t) is the

solution of the ordinary differential equation,

dnwnm(t)

dtn
= (−1)na(U, Ynm)(a, t) −

n∑
j=1

γnja
−j d

n−jwnm(t)

dtn−j
(2.2.14)

with the initial conditions,

wnm(0) =
dwnm(0)

dt
= . . . =

dn−1wnm(0)

dtn−1
= 0 (2.2.15)

This exact NRBC is local in time but non-local in space, having no high derivatives
of u with respect to r due to the introduction of auxiliary variables (following the

31



method of Collino (Collino, 1993)). In the next year, Grote and Keller (1996) imple-
mented the original boundary condition (Eq. (2.2.12)) and the modified boundary
condition with the finite difference method and the finite element method. They
showed that the boundary conditions were straightforward to implement and re-
quired little extra memory. Based on these boundary conditions, Grote and Keller
(1998) presented an exact NRBC for time-dependent Maxwell’s equations in three
dimensions, which could be implemented with the finite difference method. This
condition holds on a spherical surface, outside of which the medium is assumed
to be homogeneous, isotropic, and source-free. The condition is local in time but
global in space. Then Grote and Keller (2000) extended the concept to elastic waves
in three dimensions. The exact NRBC that they proposed still holds on a spheri-
cal boundary, outside of which the medium is assumed to be linear, homogeneous,
isotropic and source-free. The exact NRBC is local in time, but still global in space.
Nevertheless, it can be combined easily with numerical methods for the interior
region. By introducing a sequence of auxiliary variables, Grote (2006) derived an
exact NRBC for the time-dependent Maxwell’s equations in three dimensions, which
is not only local in time but also local in space.

2.2.5.2 Boundary conditions of absolute transparency

Sofronov (1998) constructed exact NRBCs used for the scalar wave equations of
circular and spherical boundaries. The boundary conditions were called the bound-
ary conditions of absolute transparency (BCAT). The boundary conditions were
formulated by using Fourier transform with respect to space variables and convolu-
tions with respect to time. Instead of calculating the convolution integrals directly,
Sofronov developed and used the recurrence formulae with respect to time to calcu-
late them. In order to extend the BCAT to non-circular or non-spherical geometry,
he first enclosed the actual non-reflecting boundary between two additional circular
or spherical boundaries, and then used the interpolation. The BCAT is global in
space but local in time.

2.2.5.3 Residual-potential boundary

Recently, Geers and Sprague (2010) have developed the residual-potential (RP)
boundary, an exact non-reflecting boundary for time-dependent, infinite domain
problems in computational acoustics. The RP boundary is based on the concept of
the residual-potential, which has been previously used for solving a variety of canoni-
cal problems (Geers, 1969, 1971, 1972). In order to avoid ill-conditioning problems, a
non-dimensional residual function rn(t) was obtained from the inverse-transforming
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R(s) (the Laplace transform of rn(t)) which was expressed as a partial-fraction ex-
pansion. The solution obtained from the RP boundary is expressed in terms of a cou-
pled equation of two sets of equations which is obtained from coupling them through
nodal-modal transformation based on the orthogonal surface functions. The first set
of equations is the set of first-order, uncoupled ordinary differential equations for
nodal boundary responses, and the second one is the set of uncoupled time-stepping
equations for modal boundary responses. The RP boundary is spherical, geometri-
cally local for a compact body, spatially non-local but temporally local. However,
the principal limitation of the RP boundary is that it loses geometric locality for
non-compact bodies.

2.3 Local procedures

Local procedures are generally approximate. The resulting artificial boundary con-
ditions usually have low accuracy. When artificial boundaries are placed close to
the source of excitation, significant spurious reflections exist. To alleviate the loss
of accuracy, the size of the bounded domain has to be increased. This leads to the
increase of the computational time. However, in the time-domain analysis, the local
procedures are rather computational efficient because convolution integrals are not
required. Most of local procedures are local in space and time, and therefore, a less
amount of data is processed compared to the global ones. Thus, the local procedures
are practical for large-scale problems.

2.3.1 Low-order absorbing boundary conditions

Lysmer and Kuhlemeyer (1969) proposed the first local transmitting boundary and
applied it to the FE analyses of infinite elastic media. Since this transmitting bound-
ary is based on applying viscous damping forces along the boundary as shown in
Fig. 2.3.1, it is always referred to as the viscous boundary. The viscous bound-
ary is formulated for two-dimensional elastic media as the following two first-order
differential equations:

σ = a ρ VP ẇ (2.3.1)

τ = b ρ VS u̇ (2.3.2)

where a and b are the dimensionless parameters, ρ is the mass density, VP is the
velocity of P -waves, VS is the velocity of S-waves, σ is a normal stress, τ is a shear
stress, ẇ is a normal velocity and u̇ is a tangential velocity.
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The ability of the viscous boundary to absorb impinging elastic waves is evaluated
by an energy ratio defined as the ratio of the energy transmitted by the reflected wave
to the energy transmitted by the incident wave. A unit energy ratio corresponds
to perfect reflection while a zero energy ratio corresponds to complete absorption.
For a given choice of a and b, they found that the energy ratio depended only on
the incident angle θ and Poisson’s ratio μ of the medium. The parameters a and
b were chosen to minimize the reflected energy for an incident plane wave hitting
the boundary at a given angle of incidence. a = b = 1 was recommended as a good
choice in general. However, if the incident wave hits the boundary at a sharp angle,
the boundary conditions will yield large spurious reflection.

P P
S

θθ
ν

X

Y

σ = a ρVP ẇ

τ = b ρ VS u̇
(Viscous boundary)

Figure 2.3.1: Incident P -wave at viscous boundary

The performance of the viscous boundary is known to deteriorate as the position
approaches the source of scattering, especially in the low-frequency range. The
great advantage of this boundary condition is that its absorption characteristics is
independent of frequency and that it can be easily implemented in finite element
codes for analyses in the time as well as frequency domain. The viscous boundary
has no static stiffness and is erroneous at the low-frequency limit i.e. statics.

The viscous boundary was later generalized by White et al. (1977) as the uni-
fied boundary, which can be applied to anisotropic media with a certain choice of
the parameters a and b. They obtained both parameters by first discretizing the
domain with finite elements, and then determining the linear relationship between
stresses and velocities on the boundary. Only the plane-strain and the axisymmetric
conditions were considered in the formulations.

Akiyoshi (1978) developed the compatible viscous boundary for shear waves,
which is a correction to the viscous boundary to account for the discretization scheme
used for the domain. However, this approach has the disadvantage of involving a
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convolution integral in the formulation, losing the local character of the boundary
condition. Later Akiyoshi et al. (1994) presented absorbing boundary conditions in
the time domain (u − w, u − U and u − p formulations) for fluid-saturated porous
media, based on Biot’s two-phase mixture theory and the paraxial approximation.
The absorbing boundary conditions are almost equivalent to the viscous boundary
condition in the fundamental mode, focusing on the isotropic case. The concept
of Akiyoshi et al. (1994) was then extended to transverse isotropic and anisotropic
media (Akiyoshi et al., 1998). They introduced the equivalent Lame’s constants
under conditions of uniqueness to facilitate the analytical solutions.

The viscous boundary is regarded as a low-order transmitting boundary since
the order of approximation is one. It has been implemented in commercial finite
element packages such as ABAQUS, DIANA, etc.

2.3.2 High-order absorbing boundary conditions

2.3.2.1 Free-space boundary conditions

Lindman (1975) proposed the free-space boundary conditions for the time-dependent
scalar wave equation. The boundary conditions are based on use of projection oper-
ators. The projection operators use past data on the boundary which are processed
in the form of the updating of three to six wave equations. Lindman only determined
reflection coefficients for the high-order boundary conditions to minimize reflection
over a broad range of the angle of incidence for both propagating and evanescent
waves. The minimum reflection coefficient of the free-space boundary conditions was
found to be 1 percent or less while the maximum angle of incidence on the boundary
could be up to 89 degrees, which is adequate for practical cases.

2.3.2.2 Paraxial boundary conditions

In 1977, Engquist and Majda proposed a hierarchy of high-order absorbing boundary
conditions for scalar waves. The theoretical non-local boundary conditions of the
scalar wave equation based on the theory of pseudodifferential operators is approx-
imated by a Padé series (a rational function). The first three boundary conditions
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are expressed in the Cartesian coordinates as

A1:
(

∂

∂x
+

1

c

∂

∂t

)
u = 0 (2.3.3a)

A2:
(

1

c

∂2

∂x∂t
+

1

c2

∂2

∂t2
− 1

2

∂2

∂y2

)
u = 0 (2.3.3b)

A3:
(

1

c2

∂3

∂t2∂x
− 1

4

∂3

∂x∂y2
+

1

c3

∂3

∂t3
− 3

4

1

c

∂3

∂t∂y2

)
u = 0 (2.3.3c)

Rational approximation is known to have better properties than polynomial ap-
proximation. This was the first time that the method of rational approximation was
used as a tool to derive the absorbing boundary conditions (ABCs). These ABCs
are known as the paraxial boundary conditions.

Clayton and Engquist (1977) further developed the paraxial boundary conditions
for scalar and elastic wave equations, which were computationally inexpensive and
simple to apply. The chief feature of the paraxial boundary conditions is that the
outward-moving wave field can be separated from the inward-moving one. Engquist
and Majda (1979) also further developed the theoretical and practical aspects of
their paraxial boundary conditions proposed in 1977.

The paraxial boundary conditions are most convenient for finite difference ap-
plications. They appear as mathematical artifacts, being less supported by physical
considerations when compared with the viscous boundary condition. The first ap-
proximation in Eq. (2.3.3a) is equivalent to the viscous boundary condition.

2.3.2.3 Bayliss-Turkel boundary conditions

Bayliss and Turkel (1980) proposed a sequence of ABCs for the three-dimensional
wave equation in spherical or cylindrical coordinates. The ABCs are based on
asymptotic expansions in 1/r of the solution of the scalar wave equation where
r is the distance from a fixed point. Such boundary conditions form a sequence
of differential operators Bm which, for any m, annihilate the first m terms of the
asymptotic expansion (based on the method of separation of variables) in Eq. (2.3.4),

p(t, r, θ, φ) =
∞∑

j=1

fj(t − r, θ, φ)

rj
(2.3.4)

where θ and φ are the angular variables of the spherical coordinates centered at a
fixed origin in space. A typical boundary condition is of the form,

Bmp = 0 (2.3.5)
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where p is the perturbation pressure, and the operator Bm is expressed as

Bm =
m∏

l=1

(
∂

∂t
+

∂

∂r
+

2l − 1

r

)
(2.3.6)

Note that the mth-order condition involves a product of m first-order normal and
time derivatives and thus leads to mth-order differential operators. When applied
as an absorbing boundary of an increasing order, the operators in this sequence lead
to improved accuracy but, at the same time, increasing difficulty of implementation
(Givoli, 2004). Although m in Eq. (2.3.6) may be theoretically as large as desired,
this ABC, at least in its original form (Eq. (2.3.6)), cannot be implemented up to
an arbitrarily high-order due to the high derivatives appearing in it. For the 3D
Helmholtz equation,

�u + k2u = 0 (2.3.7)

exterior to a sphere r = r0, the solution based on the asymptotic expansion is
expressed as

u =
eikr

kr

∞∑
j=0

Fj(θ, φ)

(kr)j
(2.3.8)

By annihilating the first m terms in the expansion, the operator Bm is expressed as

Bm =
m∏

j=1

(
∂

∂r
− ik +

(2j − 1)

r

)
(2.3.9)

For the 2D Helmholtz equation, the solution based on the asymptotic expansion is
expressed as

u ≈
√

2

πkr
ei(kr−π/2)

∞∑
j=0

fj(θ)

rj
(2.3.10)

for simplicity, and the operator Bm is expressed as

Bm =
m∏

j=1

(
∂

∂r
+

(2j − 3/2)

r
− ik

)
(2.3.11)

For the 3D Laplace equation,

�u = 0 (2.3.12)
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the solution based on the asymptotic expansion is expressed as

u =
1

r

∞∑
j=0

Fj(θ, φ)

rj
(2.3.13)

By setting k = 0 in Eq. (2.3.11), the operator Bm is expressed as

Bm =
m∏

j=1

(
∂

∂r
+

(2j − 1)

r

)
(2.3.14)

Bayliss and Turkel (1982) further extended the sequence of ABCs they proposed
earlier for far fields to fluid dynamics. They applied the sequence of ABCs to the
non-linear compressible Navier-Stokes and Euler equations. These ABCs can be
used at both subsonic outflow boundaries and at characteristic boundaries where
the normal velocity is zero. In case of the subsonic flows, the equations of the ABCs
are elliptic. The Sommerfeld-type radiation conditions for elliptic equations can be
constructed from these ABCs.

The Bayliss-Turkel boundary conditions are perhaps the first operators providing
a mechanism by which a finite-element mesh can be terminated without the neces-
sity to include an excessively large number of elements in the region surrounding
the structure. The operators became very popular because of their simplicity and
good accuracy in comparison to the more primitive Sommerfeld radiation condition
(Givoli, 1991).

2.3.2.4 Extrapolation boundary conditions

Liao and Wong (1984) developed an extrapolation boundary condition for the nu-
merical simulation of elastic wave propagation. It is a second-order ABC. The
numerical scheme that they adopted is in the form of an extrapolation algorithm:
the motion of the boundary at the current time step is predicted by extrapolating
the past motion of the vicinity of the boundary, using backward temporal and spa-
tial differences. The accuracy of results is controlled by the number of terms in the
extrapolation series, and can be further improved by decreasing the size of the time
step. The extrapolation boundary condition can be implemented easily in either the
finite element method or the finite difference method. Later Liao (1996) generalized
the extrapolation boundary condition of Liao and Wong (1984) by coupling a space-
extrapolation to the space-time extrapolation and by introducing multiple artificial
wave speeds. Only explicit time-integration schemes can be used for the generalized
boundary condition in the time-domain analysis.
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2.3.2.5 Higdon boundary conditions

Higdon (1986, 1987) developed the absorbing boundary conditions based on the
dispersion relation for discrete problems. He first approximated the scalar wave
equation using finite differences in both space and time, rather than finding ana-
lytical boundary conditions and then discretizing the analytical conditions. This
approach yields some simple and effective discrete boundary conditions which are
consistent with the analytical boundary conditions expressed in

Hmu =

(
m∏

j=1

(
(cos αj)

∂

∂t
− c

∂

∂x

))
u = 0 (2.3.15)

where αj denotes an angle of incidence and c is the wave speed. Equation (2.3.15) is
known as the Higdon boundary condition. Higdon’s numerical experiments showed
that the amount of spurious reflections was not very sensitive to the choice of the
αj. Also, a reasonably small value of m led to a boundary condition which absorbed
waves very well for a wide range of angles of incidence.

Higdon later extended the boundary condition to acoustic and elastic waves
in stratified media (Higdon, 1992) and also dispersive waves (Higdon, 1994). The
Higdon boundary conditions are attractive because they are local and therefore
relatively easy to use in a parallel finite difference code. The Higdon boundary
conditions can be used not only for the scalar wave equation but also for the elastic
case. These boundary conditions can be defined up to any desired order. However,
the appearance of increasingly high order derivatives in the boundary renders it
impractical beyond a certain order, typically two or three, which is similar to the
Engquist-Majda ABCs (Engquist and Majda, 1977, 1979) and the Bayliss-Turkel
ABCs (Bayliss and Turkel, 1980, 1982).

2.3.3 Local high-order absorbing boundary conditions

The local high-order ABCs are local in time and involve no high derivatives. The first
local high-order ABC was devised by Collino (1993) for two-dimensional acoustic
waves in rectangular domains. In theory, some of the classical ABCs, such as the
Engquist-Majda ABC (Engquist and Majda, 1979), the Bayliss-Turkel ABC (Bayliss
and Turkel, 1980) and the Higdon ABC (Higdon, 1987) can be defined up to any
desired order. However, the appearance of increasingly high order derivatives in
these ABCs renders them impractical beyond a certain order, typically two or three.
For example, the P -order Higdon ABC involves P -order derivatives in space and
time, and is thus very inconvenient for implementation when P becomes large. In
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contrast, the Collino ABC involves no high-order derivatives owing to the use of
auxiliary variables φj on the artificial boundary. This development enables the
implementation of ABCs of an arbitrarily high order. Equations (2.3.16) and (2.3.17)
constitute the Collino ABC of order J in the time domain.

∂u

∂x
+

1

c

∂u

∂t
− 1

c

J∑
j=1

βj
∂φj

∂t
= 0 (2.3.16)

1

c2

∂2φj

∂t2
− αj

∂2φj

∂y2
− ∂2u

∂y2
= 0 (2.3.17)

where j = 1, 2, . . . , J ,

αj = cos2

(
jπ

2J + 1

)
and βj =

2sin2(jπ/(2J + 1))

2J + 1
(2.3.18)

Other high-order ABCs that also use auxiliary variables in the time domain are,
for example, the Hagstrom-Hariharan ABC (Hagstrom and Hariharan, 1998), the
Givoli-Neta ABC (Givoli and Neta, 2003; Givoli et al., 2003), and the Hagstrom-
Warburton ABC (Hagstrom and Warburton, 2004).

Hagstrom and Hariharan (1998) presented a systematic approach for construct-
ing asymptotic boundary conditions for the isotropic wave equations in two and
three dimensions (i.e. polar and spherical coordinates) by direct applying the se-
quence of local boundary operators of Bayliss and Turkel (Bayliss and Turkel, 1980).
The boundary conditions take a recursive form i.e. they are expressed recursively
using auxiliary variables without any use of high-order derivatives. The key idea is
to construct a sequence of operators which approximately annihilate the residual of
the preceding element in the sequence, viewed as a function on the artificial bound-
ary. For two-dimensional wave equation, the recursion leads to the sequence of the
boundary conditions as summarized in the following equations:

1

c
∂tu + ∂ru +

1

2r
u = w1 (2.3.19a)

1

c
∂twj +

j

r
wj =

(j − 1/2)2

4r2
wj−1 +

1

4r2
∂2

θwj−1 + wj+1 (2.3.19b)

where p is the order of the ABC, j = 1, 2, . . . , p, r is the radius of the circle, and
wj are unknown auxiliary variables. These boundary conditions are asymptotic and
local in space and time. For three-dimensional wave equation, the sequence of the
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boundary conditions are

1

c
∂tu + ∂ru +

1

r
u = w1 (2.3.20a)

1

c
∂twj +

j

r
wj =

1

4r2
(∇2

s + j(j − 1))wj−1 + wj+1 (2.3.20b)

where p is the order of the ABC, j = 2, 3, . . . , p, r is the radius of the sphere, and ∇2
s

denotes the spherical Laplacian. This recursion can be truncated for finite spherical
harmonic expansions and also can lead to an exact condition which is similar to
those of Grote and Keller (1995a, 1996) but is somewhat easier and cheaper to use
as it avoids spherical harmonic transformations. These boundary conditions are
local in space and time.

The Givoli-Neta ABC developed by Givoli and Neta (2003) or by Givoli et al.
(2003) is based on the same reformulation of the sequence of ABCs proposed by
Higdon (Higdon, 1987, 1994), but no high-order derivatives beyond second order
are involved in the formulation. The Givoli-Neta ABC was both constructed in the
Cartesian coordinates (x, y) for the linear time-dependent wave equation (with or
without a dispersive term). It can only be used for homogeneous semi-infinite layers
(or waveguides). Compared to the auxiliary variables in the Hagstrom-Hariharan
ABC (Hagstrom and Hariharan, 1998), the ones used in the Givoli-Neta ABC are
less complicated since they are defined via simple recursive relations. The Jth-order
Givoli-Neta ABC is expressed as

β0u,t +u,x = φ1 (2.3.21a)

βjφj,t −αjφj−1,tt −φj−1,yy +λφj−1 = φj+1 (2.3.21b)

αj =
1

C2
j

− 1

C2
0

, β0 =
1

C1

, βj =
1

Cj

− 1

Cj+1

, λ =
f2

C2
0

(2.3.21c)

φ0 ≡ u, φJ ≡ 0 (2.3.21d)

where j = 1, 2, . . . , J − 1, C0 is the given reference wave speed, Cj are parameters
signifying phase speeds in the x-direction which have to be chosen, and φj are
auxiliary variables. The Givoli-Neta ABC developed by Givoli and Neta (2003) was
incorporated into a finite difference scheme while the other one (Givoli et al., 2003)
was incorporated into a finite element scheme.

The Hagstrom-Warburton ABC (Hagstrom and Warburton, 2004) is a modifica-
tion of the Givoli-Neta ABC with enhanced stability. This leads to balanced systems
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of wave equations on the boundaries. The Hagstrom-Warburton ABC of order P is
expressed in the recursive relations as follows:

(a0∂t + c∂x)u = a0∂tφ1 (2.3.22a)

(aj∂t + c∂x)φj = (aj∂t − c∂x)φj+1 (2.3.22b)

φP+1 = 0 (2.3.22c)

where j = 1, 2, . . . , P , c is the given wave speed, φj are auxiliary variables, and aj

are free parameters signifying cosines of incidence angles which have to be chosen.
Since the Hagstrom-Warburton ABC was developed for a full-space configuration of
rectangles, special corner conditions were also devised. The ABC and the special
corner conditions were incorporated into a finite difference scheme (Hagstrom and
Warburton, 2004) and a finite element scheme (Givoli et al., 2006). As compared
with the Givoli-Neta ABC (Givoli and Neta, 2003), the Hagstrom-Warburton ABC
has certain advantages over the Givoli-Neta ABC. For example, it has much lower
reflection coefficients, involving derivatives of lower order which is expected to have
a positive effect on the performance of the numerical scheme. Moreover, it lends
itself easily to an adaptive update of the order P , and is more stable in long-time
analysis.

Hagstrom et al. (2007) studied the free parameters 0 < aj ≤ 1, for j = 0, 1, . . . , P

in the Hagstrom-Warburton ABC (Hagstrom and Warburton, 2004) that had to be
chosen. They suggested that the choice aj = 1 for all j was satisfactory in general
although it was not necessary optimal. They also presented and tested an adaptive
scheme which controlled the time-varying values of P and aj. In the next year,
Hagstrom et al. (2008) further developed and extended the Hagstrom-Warburton
ABC in various ways. First, the ABC was analyzed in new ways and important in-
formation was extracted from the analysis. Second, it was extended to a dispersive
medium for which the Klein-Gordon wave equation,

∂2
t u − c2∇2u + f 2u = s (2.3.23)

governs (where c is the given wave speed, f is the given dispersion parameter, and
s is the given wave source function). Third, it was also extended to a stratified
medium. Fourth, the evanescent modes were introduced into the formulation of
the ABC in order to improve the accuracy of the long-time behavior of the ABC.
Hagstrom et al. (2008) also incorporated the ABC into finite difference and finite
element schemes.
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Recently, Bécache et al. (2010) have proposed a high-order ABC for scalar wave
propagation in anisotropic and convective (non-dispersive isotropic) media. The
ABC was still stemmed from the Hagstrom-Warburton ABC (Hagstrom and War-
burton, 2004) used for isotropic media. They proved that the reflection coefficient
of the ABC decreased exponentially as the order P of the ABC increased. The
ABC was also proved to be well-posed using Kreiss criterion (Kreiss, 1970) instead
of the energy method (Ha-Duong and Joly, 1994) which was much more difficult.
In the implementation, only the ABC of the anisotropic medium was incorporated
into a finite element scheme. In case of the convective medium, it was not incor-
porated into the finite element scheme because the formulation was still impossible
for the convective medium due to the appearance of mixed space-time derivatives.
This ABC is local in space and time and applicable to a full-space configuration of
rectangles.

2.3.4 Doubly asymptotic approximations

The doubly asymptotic approximations (DAAs) are regarded as approximate impedance
boundaries that match asymptotically the exact boundary integral representation
for unbounded domains at both early time (high-frequency limit) and late time (low-
frequency limit). The DAA boundaries were first developed to study the acoustic
fluid-structure interaction in underwater shock problems in the 1970s (Geers, 1971,
1974, 1978). In the derivation, the Kirchhoff’s integral equation (KIE) was used for
an exact and integral-equation solution for the wave equation of a uniform acoustic
fluid. It can be written for the pressure p at the position R on the boundary at the
time t as the following equation:

2πp(R, t) =

∫ R′ �=R

Γ

{
ρ
v̇(R′, tr)
|R′ − R| −

n′ · (R′ − R)

|R′ − R|3
[
p(R′, tr) +

|R′ − R|
c

ṗ(R′, tr)
]}

dΓ′

(2.3.24)

where v(R′, t) is the normal fluid velocity at the boundary, the overdot denotes a
temporal derivatives, tr = t − |R′−R|

c
is the retarded time, n′ is the outward unit

normal to the boundary at R′, and c is the sound speed. Geers took the Laplace
transform of Eq. (2.3.24) to obtain∫

Γ

n′ · (R′ − R)

|R′ − R3|
(
1 + |R′ − R|s

c

)
e−|R′−R| s

c P (R′, s)dΓ′ = ρs

∫
Γ

e−|R′−R| s
c

|R′ − R| V (R′, s)dΓ′

(2.3.25)

43



where s is an excitation frequency. Equation (2.3.24) is used for constructing the
early-time-approximation (ETA) boundaries while Eq. (2.3.25) is used for the late-
time-approximation (LTA) boundaries.

The ETA boundaries are systematically expressed in the following equations:

ETA1 : p(R, t) = ρcv(R, t) (2.3.26a)

ETA2 : ṗ(R, t) + cκ(R)p(R, t) = ρcv̇(R, t) (2.3.26b)

ETA3 : p̈(R, t) + cκ(R)ṗ(R, t) = ρcv̈(R, t) +
1

2
c2[κ2(R) − τ(R) + ∇2

Γ]v(R, t)

(2.3.26c)

where κ and τ are mean and total curvature. The ETA boundaries were system-
atically constructed by Felippa (1980) and Geers (1991). They parameterized the
surface around a field point, noting the region of influence at a prescribed early
time. Afterwards, they expanded the surface fields in Fourier series, and retained
the terms of appropriate orders. The ETA1 is known as the plane-wave approxima-
tion (PWA). The ETA2 is known as the curved-wave approximation (CWA) as it
introduces the effects of local curvature into the ETA1. Both ETA1 and ETA2 are
point relations. For the ETA3, it includes additional curvature terms, as well as the
surface Laplacian, which destroys the point-relation attribute but spatial locality is
still maintained. These ETA boundaries are highly absorptive and spatially local.

For the LTA boundaries, they were constructed systematically from Eq. (2.3.25)
by expanding the exponentials in Maclauren series, retaining terms of appropriate
powers of s, and taking inverse-transform the results (Geers and Zhang, 1994; Geers
and Toothaker, 2000) as expressed in the following equations:

LTA1 : γp(R, t) = ρβv̇(R, t) (2.3.27a)

LTA2 : γp(R, t) = ρ[βv̇(R, t) − 1

c
αv̈(R, t)] (2.3.27b)

LTA3 : γp(R, t) − 1

c2
ηp̈(R, t) = ρ[βv̇(R, t) − 1

c
αv̈(R, t) +

1

c2
μ

...
v(R, t)] (2.3.27c)

where α, β, γ, η and μ are spatial integral operators which are spatially non-local.
The LTA1 is known as added-mass or virtual-mass approximation, which governs
hydrodynamic flow. The LTA2 introduces the first-order effects of compressibility,
which are embodied in the second term on the right. The LTA3 includes both
first- and second-order compressibility effects. The LTA boundaries are minimally
absorptive, and spatially non-local due to the spatial integral operators.
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The method of operator matching to early-time and late-time approximations
was employed to obtain the doubly asymptotic approximations,

DAA1 : ṗ(R, t) + cβ−1γp(R, t) = ρcv̇(R, t) (2.3.28a)

DAA2 : p̈(R, t) + c(χ + κ)ṗ(R, t) + c2χβ−1γp(R, t)

= ρc[v̈(R, t) + cχv̇(R, t)] (2.3.28b)

DAA3 :
...
p(R, t) + c(λβ−1α + ζ + κ)p̈(R, t)

+ c2ζβ−1γṗ(R, t) + c3λβ−1γp(R, t)

= ρc[
...
v(R, t) + c(λβ−1α + ζ)v̈(R, t) + c2λv̇(R, t)] (2.3.28c)

where χ and ζ are non-local spatial integral operators. The DAA boundaries are,
therefore, spatially non-local. In a time-domain analysis, this is not a significant
drawback unless the time increment is changed frequently.

In the 1980s, the acoustic DAA methodology was improved by Felippa (1980),
Geers and Felippa (1983), and Nicolas-Vullierme (1991). The DAA boundaries were
extended to other areas. The DAA1 was also formulated heuristically by Underwood
and Geers (1981) for elastodynamics, and further developed by Mathews and Geers
(1987). In 1997, the DAA1 and the DAA2 were developed for transient elastody-
namics by Geers and Lewis (1997), and in the same year, the DAA boundaries were
extended to transient poroelastodynamics by Qi and Geers (1997). For electromag-
netic scattering, the DAA1 was developed by Geers and Zhang (1988).

The advantages of the DAA boundaries are their geometric versatility, temporal
locality and ease of implementation. However, it is extremely difficult to construct
a DAA formulation beyond DAA2 (Geers and Sprague, 2010). The availability of
high-order formulations limits the accuracy of DAA boundaries.

2.3.5 Infinite elements

The infinite element was introduced in the original work of Bettess (1977) for Laplace
problems. The approach is very similar to the FEM except the shape function used
for the elements extending to infinity. The shape function is based on Lagrange
polynomials, including an exponential decay term as expressed in Eq. (2.3.29) for a
one-dimensional problem,

Nj(r) = e(rj−r)/Llj(r) (2.3.29)

where lj(r) is the Lagrange polynomial and L is an arbitrarily positive parameter.
The accuracy of the infinite elements depends on the choice of the shape functions
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towards infinity and on the order of approximation. The original infinite element
of Bettes was used for a Laplace problem. The infinite elements are as spatially
and temporally local as finite elements. They can be used for discretizing the entire
unbounded domain without any use of ABCs. Therefore, infinite elements may be
viewed as local ABCs. Figure 2.3.2 illustrates the infinite elements on the boundary
Γ of the computational domain Ωi to represent the unbounded domain Ωe.

Infinite element

+∞

Γ

Ωi
S

Ωe

Figure 2.3.2: Infinite elements

Shortly thereafter, Bettess and Zienkiewicz (1977) extended the initial infinite
element to the Helmholtz equation, using the same shape function (Eq. (2.3.29))
but introducing a complex-valued factor e(ikr) in it as expressed in Eq. (2.3.30),

Nj(r) = e(ikr)e(rj−r)/Llj(r) (2.3.30)

However, the infinite elements based on the shape functions in Eqs. (2.3.29) and
(2.3.30) are unable to represent the correct asymptotic decay i.e. r−1/2 in two-
dimensional problems. Thus, the solutions obtained from these two shape functions
are not quite correct.

Zienkiewicz et al. (1983) further developed the infinite element by introducing
a finite to infinite mapping so that the shape functions of infinite elements are
constructed on a reference element spanning a finite interval. The mapping is of the
form

x = Ñ0(ξ)x0 + Ñ2(ξ)x2 (2.3.31)

where x0 and x2 are nodal coordinates, and Ñ0 and Ñ2 are expressed as −ξ
1−ξ

and
1+ ξ

1−ξ
, respectively. It was further shown that polynomials defined on the reference
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element were transformed by the mapping to functions with reciprocal powers of r.
A polynomial p(ξ) was written as

p(ξ) =
N∑

i=0

αiξ
i =

N∑
i=0

βir
−i (2.3.32)

with r = x − x0. By using this method, the previous restriction was completely
removed and the correct decay was incorporated in the infinite element. Therefore,
the solution of the Helmholtz problem obtained from using this mapped infinite
element can represent the real behaviors of unbounded domains.

Another approach based on the use of wave envelope elements was first proposed
by Astley (1983) and Astley and Eversman (1983) for acoustic problems. This
approach incorporates the correct asymptotic behavior into the elements by using
complex conjugates of wave-like functions as weight functions (i.e. r−1e(−ikr)) in the
Galerkin approach. This simplifies the element integration considerably due to the
cancellation of the oscillatory terms in the weight function within the integrands.
However, it results in unsymmetric metrices that destroy the symmetric structure
of the semi-discretization of the bounded domains.

Burnett (1994) proposed the prolate spheroidal infinite element based on a mul-
tipole expansion in three-dimensional acoustic problems. This infinite element has
symmetric matrices. The scattered or radiated pressure p exterior to the sphere is
represented by the following multipole expansion in prolate spheroidal coordinates
r, θ, φ,

p =
e−ikr

r

∞∑
n=0

Gn(θ, φ)

rn
(2.3.33)

where Gn(θ, φ) denotes coefficients. The original formulation of Burnett was derived
with unconjugated weight functions. Hence, the undefined oscillatory terms that
comprise all terms containing the expression lim

r̂ → ∞
e−i2kr̂ exist in the formulation.

This formulation was later known as the unconjugated Burnett formulation. The use
of spheroidal coordinates ensures that the weight functions is complete as the radial
order of the elements increases. Another formulation was proposed by Astley et al.
(1994) using complex conjugate weight functions which were scaled by a geometric
weight factor. It was later called the conjugated Astley-Leis formulation since the
approach fit within the variational framework of Leis (1986).

The concept of Burnett (1994) was extended to the oblate spheroidal acoustic
infinite element (Burnett and Holford, 1998) in three-dimensional acoustic prob-
lems, and also to the ellipsoidal infinite element which is the logical generalization
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of the polate and oblate elements. The three axes of an ellipsoid can be chosen
independently. Therefore, the shapes of structures can be more circumscribed by
an ellipsoid compared to those polate and oblate spheroids. This results in the
reduction in size of the computational domain, thereby increasing in the greater
computational speeds.

Astley (1996) extended the conjugated Astley-Leis infinite element to the time-
domain analysis by applying an inverse Fourier transform to a mapped wave envelop
formulation in the frequency domain. This yields a discrete system of ordinary differ-
ential equations in time to which time-stepping schemes can be applied. Therefore,
the coefficient matrices can be written in terms of frequency-independent mass, stiff-
ness and damping matrices. This is opposite to the time-domain analysis using the
unconjugated elements that leads to convolution integrals. Later Astley (1998b)
extended this approach to oblate and prolate spheroidal elements for time-harmonic
and transient wave problems in unbounded domains. Many examples were analyzed
in order to study the required element orders, the effect of time step size and the
performance of the iterative solutions. In the same year, Astley (1998a) formulated
the conjugated Astley-Leis infinite element with a geometric weight factor based on
Burnett’s spheroidal trial solutions.

Shirron and Babuska (1998) compared the accuracy of approximate boundary
conditions with the conjugated and unconjugated Burnett infinite elements for exte-
rior Helmholtz problems. The test functions they used did not include any geometric
factors. They found that the accuracy of the approximate boundary conditions de-
creased with increasing frequencies and was less than that of the infinite elements.
Comparing those infinite elements, they also found that the rate of convergence of
the conjugated infinite element was slower than that of the unconjugated one. In
addition, the conjugated infinite element was more stable, converging to the exact
solution in the far field, but being less accurate in the near field. On the contrary,
the unconjugated infinite element diverged in the far field. This instability of the
unconjugated infinite element was due to the bilinear form on which it was based.

Demkowicz and Gerdes (1998) analyzed the convergence properties of infinite el-
ements which gave the first insight into the convergence mechanism behind infinite
elements for separable geometry. Gerdes (1998) extended this work by performing
numerical convergence studies on the conjugated and unconjugated infinite elements
based on the Burnett and the Astley-Leis formulation. In conclusion, the unconju-
gated Burnett infinite element performed well for the near field while the conjugated
Astley-Leis infinite element yielded the good result for the far field. For the con-
jugated Burnett and the unconjugated Astley-Leis infinite elements, they were the
least accurate. Nevertheless, the study of Astley and Coyette (2001b) showed that
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the performance of both infinite elements deteriorated at high frequencies and highly
elongated artificial boundaries. The stability of infinite elements was also studied
by Astley and Hamilton (2006) for transient acoustics. The conjugated Burnett and
the mapped Bettes infinite elements were used in the study. From the study, it was
shown that the stability of the infinite elements critically depended on the form of
the inner surface of the infinite element domain.

Even though infinite elements are widely used today, they still have some limi-
tations, for example, the geometry of the infinite-element mesh has to conform with
a separable coordinate system for the wave equation, and increase of the order of
elements to improve the accuracy of solutions may lead to ill-conditioning problems
(Astley, 2000).

2.3.6 Absorbing layers

The perfectly matched layer (PML) is an absorbing layer which is a layer of artificial
absorbing material. It is usually placed adjacent to the edges of the computational
domain so that waves do not reflect at the interface. The PML was originally
developed and implemented by Berenger (1994) for two-dimensional electromagnetic
split fields as shown in Fig. 2.3.3. The computational domain is surrounded by a
finite-thickness layer in which artificial attenuation of wave propagation in a pre-
selected direction pointing to infinity is introduced to the governing equations for
the unbounded domain. Later, Berenger extended the PML to three-dimensional
electromagnetic waves (Berenger, 1996).

Perfectly matched layer

Wave source

Vacuum

Vacuum

Outgoing wave

Edge of
computational domain

y

x

Figure 2.3.3: Perfectly matched layer

The PML is a hypothetical and nonphysical medium based on a mathematical
model which is independent of the boundary condition. It was originally derived
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for solving unbounded electromagnetic problems (Maxwell’s equations) using the
finite-difference time-domain technique (FDTD). Regardless of their frequency, an-
gle of incidence and polarization, it can be implemented at the outer boundary of
a FDTD grid to completely absorb outgoing waves. In a certain sense, the PML
cannot exactly be called the boundary conditions because the layers always have
finite thickness. Compared to transmitting boundaries based on asymptotic solu-
tions, the PML equations can apply where an asymptotic solution is not available.
Nevertheless, the PML requires more equations to solve for the solution.

The key concept is that the wave solutions are split artificially into the sum
of two new artificial field components (E and H components) in the Cartesian
coordinates, and the resulting field components are expressed as two coupled first-
order partial differential equations. By choosing loss parameters consistent with
a dispersionless medium, a perfectly matched planar interface is derived. Hence,
Berenger’s original formulation is called the split-field PML. The PML of Berenger
had been paid attention until in 1997, Abarbanel and Gottlieb discovered one serious
disadvantage of this PML, that is, the split set of partial differential equations was
weakly well-posed. The derivations of the well-posed PMLs used for Maxwell’s
equations were proposed by Abarbanel and Gottlieb (1998).

Following the work of Berenger, many researchers verified his technique applying
FDTD to the PML medium, but the first important advance was made by Chew and
Weedon (1994). They restated the original split-field PML concept in a stretched-
coordinate PML by viewing them as the result of a complex coordinate stretching.
The use of stretched-coordinate PML allowed Teixeira and Chew (1997) to extend
their PML to the cylindrical and spherical coordinates. The second important ad-
vance was firstly made by Sacks et al. (1995). They proposed the uniaxial PML or
UPML based on a potentially and physically realization material formulation rather
than the conventional PML (the non-physical PML of Berenger (1994)). The UPML
is based on the use of anisotropic material properties to describe the absorbing layer.
The material properties of the medium can be chosen such that a planar interface
between the anisotropic medium and the free space is perfectly reflectionless. The
UPML appears more attractive than the stretched-coordinate PML due to the fact
that the Chew-Weedon modification of the spatial derivative operator via coordinate
stretching is not required.

Unlike the conventional PML, the UPML no longer requires a modification of
Maxwell’s equations. Further, as summarized by Gedney and Taflove in Taflove
and Hagness (2000), the UPML has capabilities exceeding the conventional PML
by providing additional degrees of freedom which permit it to attenuate evanescent
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waves and terminate conductive and dispersive materials. Nowadays, the more com-
mon formulation is the UPML, which is simpler and more efficient, and commonly
implemented in commercial CEM (Computational Electromagnetic) software.

Besides the split-field PML, there is another PML approach that does not use
the split-field components. Such an approach is known as the unsplit PML, which
was firstly implemented in the time domain by Zhao and Cangellaris (1996) for
Maxwell’s equations in two-dimensional problems, and was subsequently done by
Sullivan (1997) for Maxwell’s equations in three-dimensional problems. The theory
proposed earlier by Sacks et al. (1995) was used in the formulations of the unsplit
PMLs. Yu et al. (2003) also developed an unsplit PML which was based on the
conventional E − H algorithm but did not require the split E and H components.
This unsplit PML is as memory-efficient as that using the theory of Sacks et al.
(1995). The distinct advantage of using the unsplit PML is memory efficiency due
to the less memory requirements of the FDTD procedure.

Apart from Maxwell’s equations in electromagnetics, the PML approach was
also studied and extended to the Euler equations linearized at constant flow in the
Cartesian-coordinate system by Hu (1996). Hu considered only two-dimensional
acoustic, vorticity and entropy waves, using the splitting technique introduced ear-
lier by Berenger (1994). The detail of the split-field formulation is, however, dif-
ferent from Berenger’s even though the general approach is the same. This led to
a different PML scheme with different properties. In addition, the PML approach
was extended to wave equations in elastodynamics by Chew and Liu (1996). The
complex-valued coordinate stretching was introduced to obtain the governing equa-
tions of the PML, and a FDTD formulation was obtained through the splitting of
the fields. In the same year, Hasting et al. (1996) performed the application of the
PML for two-dimensional elastic wave propagation, using finite-difference formula-
tion in the time domain analysis. The original split-field formulation of Berenger
(1994) in the Cartesian-coordinate system was adopted and modified by adding loss
terms to achieve more accurate results.

A few years later, Liu (1999) developed two PML schemes for elastic waves in the
cylindrical and spherical coordinates. In the formulation, the integrated complex
stretching variables were introduced to reduce the amount of unknown split field
components. For two-dimensional elastic wave propagation in heterogeneous and
anisotropic media, the PML approach was also developed by Collino and Tsogka
(2001). The splitting technique was adapted in the velocity-stress formulation of
elastodynamics. The finite-difference and finite-element schemes were employed in
the implementation.
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All the PMLs mentioned previously in the context of the elastodynamics are
based on first-order system in velocity and stress. Such PMLs are regarded as clas-
sical PMLs and cannot be used in a straightforward manner for numerical schemes
which are based on a second-order system in displacement, such as the finite ele-
ment method, the finite difference method, etc. The first attempt to surpass this
limitation was made by Komatitsch and Tromp (2003). They formulated a PML
for the elastic wave equation written as a second-order system in displacement, and
tested it on a two-dimensional elastic isotropic homogeneous medium.

Bécache et al. (2003) also investigated the numerical stability and well-posedness
of the PMLs for isotropic and anisotropic elastodynamics thoroughly. In detail, a
necessary condition for the stability of the PMLs in a general hyperbolic system was
first derived in terms of the geometric properties of the slowness diagrams. This
criterion was then used for explaining the instabilities observed with elastic waves,
anisotropic Maxwell’s equations and linearized Euler equations. Finally, a necessary
stability condition and a sufficient stability condition for orthotropic elastic waves
in terms of inequalities on the elasticity coefficients of the model were obtained
separately.

Basu and Chopra (2003) developed a PML concept used for time-harmonic elas-
todynamics in the Cartesian coordinates, using insights obtained from the PMLs
used in electromagnetics, and also presented a novel displacement-based, symmet-
ric finite-element implementation of the PML for time-harmonic plane-strain or
three-dimensional motion. The governing equations of the PML were defined in
the frequency domain using complex-valued coordinate stretching, and only homo-
geneous and isotropic media were considered. For the PML concept, it was illus-
trated through a one-dimensional semi-infinite rod on an elastic foundation and a
two-dimensional example of the anti-plane motion of a continuum governed by the
Helmholtz equation. For the finite-element implementations, the PML was applied
to the one-dimensional semi-infinite rod on elastic foundation, the anti-plane motion
of a semi-infinite layer on a rigid base, and the classical plane-strain soil-structure
interaction problems of a rigid strip-footing on a half-plane, on a layer which was
on a half-plane and on a layer which was on a rigid base. Soon after Basu and
Chopra (2003) proposed their PML concept. In the next year, they extended the
same concept to transient elastodynamics for homogeneous and isotropic media in
the Cartesian coordinates (Basu and Chopra, 2004).

In recent years, Harari and Albocher (2006) have formulated the equation of
an absorbing layer for time-harmonic elastic waves, based on the PML concept.
In the proposed approach, the layer was viewed as an anisotropic material with
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continuously varying complex material properties. The effect of the PML parameters
on its discrete representation was investigated through dispersion analyses.

2.4 Capacity of commercial finite element packages

for modeling unbounded domains

Some of global and local procedures have been already implemented in commercial
finite element packages in various applications in order to simulate wave propa-
gation in unbounded domains. The commercial finite element packages being re-
viewed herein are, for example, FLUSH, ABAQUS, ANSYS, ADINA, DIANA and
SOFiSTiK.

The TLM was implemented in the finite-element computer program FLUSH
(Lysmer et al., 1975). It has been widely used for seismic soil-structure interaction
analysis for a long time. The plane strain quadrilateral elements for modeling soils
and structures, the beam elements for modeling structures and multiple nonlinear
soil properties for equivalent linear analysis which allows for different damping in
each element were embodied in the program. Only semi-infinite layers with constant
depth resting on a rigid base can be modeled by FLUSH.

The viscous boundary (Lysmer and Kuhlemeyer, 1969) was adopted in ABAQUS.
Almost all of the energy of P - and S-waves can be absorbed by this viscous bound-
ary. However, the viscous boundary is less efficient in absorbing Rayleigh wave
energy (Ramshaw et al., 1998). ABAQUS also provides the application of the
impedance boundary which is based on the first-order Bayliss-Turkel absorbing
boundary (ABAQUS, 2004).

The infinite acoustic elements (FLUID129 for a circular boundary and FLUID130
for a spherical boundary) are provided in ANSYS in order to absorb an outgoing
pressure wave reaching the model boundary. These two elements provide second-
order ABCs satisfying the Sommerfeld radiation condition and can be used in modal,
harmonic and transient analyses (ANSYS, 2009a). The PML is also provided in
ANSYS for electromagnetics and acoustics in order to absorb the outgoing waves in
a modal or harmonic analysis (ANSYS, 2009b).

ADINA provides the potential-interface of type infinite for the time-domain anal-
ysis in acoustic or fluid problems. This potential-interface is based on the DAAs
(Olson and Bathe, 1985), which can be applied on the truncated boundary to simu-
late infinite fluid regions. There are three types of the interface: planar, cylindrical
and spherical interfaces. This potential-interface is also used associated with the
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potential-based-fluid elements in the analysis of transient fluid-structure interac-
tions.

DIANA (2010), which is a commercial finite element package, provides the spring
/ dashpot element for unbounded domains in elastodynamic problems (Ucci et al.,
2010). This element type actually is based on the viscous boundary (Lysmer and
Kuhlemeyer, 1969) that can absorb outgoing waves.

ACTRAN is a general purpose finite element program for the modeling of sound
propagation, transmission, absorption and for the coupled analysis of vibro-acoustic
problems. The unconjugated and conjugated spheroidal elements were implemented
in ACTRAN (Astley and Coyette, 2001b). The unconjugated element is similar to
the original Burnett element (Burnett, 1994), and the conjugated element is the
Astley-Leis type (Astley, 1998a). Both were implemented with Shifted Legendre
polynomials as a radial basis to improve conditioning at high radial orders (Shirron
and Babuska, 1998; Astley and Coyette, 2001a).

A recent development is the SBFEM (Wolf and Song, 1996; Wolf, 2003), which
provides highly accurate impedance functions. The approach makes the rigid base
mat assumption redundant. It will be commercially available for time domain anal-
ysis in a forthcoming release of SOFiSTiK (Nielsen, 2009). This could potentially
lead to a revival of substructure methods in industry.

Most of the local procedures implemented in the commercial finite element pack-
ages as mentioned above are of low-order formulation, except those provided in AN-
SYS. However, these approaches are only applicable to isotropic and homogeneous
unbounded domains with simple geometry. Therefore, such commercial finite ele-
ment packages are unable to simulate wave propagation in unbounded domain with
arbitrary geometry and material properties in an accurate and efficient way. Thus
it is of interest to develop a local high-order artificial boundary which is applicable
to arbitrary geometry and material properties, and also implemented easily with
standard finite elements.

2.5 Conclusions

As summarized in the sections above, the global and local procedures have a long
history of development. They both have advantages and disadvantages. However,
for practical engineering problems, the local procedures have attracted more atten-
tion from researchers since they are more efficient owing to their locality in time.
Among the local procedures, the local high-order ABCs are state-of-the-art. They
are appropriate for simulating propagating scalar waves in homogeneous unbounded
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domains with simple geometry. Nevertheless, almost all of them cannot simulate
evanescent waves and are thus unsuitable for long-time analyses. Therefore, the
future research on the local high-order ABCs should focus on the following topics:

• Inclusion of evanescent modes to improve the accuracy of the absorbing bound-
ary condition for long-time analyses.

• Scalar wave propagation in non-homogeneous unbounded domains with simple
and arbitrary geometry.

• Vector wave propagation in homogeneous unbounded domains with simple and
arbitrary geometry.

• Vector wave propagation in non-homogeneous unbounded domains with simple
and arbitrary geometry.

This thesis also focuses on these topics as clarified previously in the objectives of
the thesis in Section 1.4 of Chapter 1. The high-order doubly asymptotic open
boundaries proposed herein can simulate both propagating and evanescent waves
and are thus suitable for long-time analyses as presented in Chapter 3 for the modal
equations of scalar waves, and in Chapters 4 and 5 for scalar wave propagation in ho-
mogeneous unbounded domains with simple geometry. In Chapter 6, the high-order
doubly asymptotic open boundary for scalar wave propagation in non-homogeneous
unbounded domains with simple geometry is proposed. In Chapter 7, the high-order
doubly asymptotic open boundary for vector wave propagation in a homogeneous
unbounded domain with simple geometry is presented.
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Chapter 3

Doubly Asymptotic Open Boundaries
for Modal Equations of Scalar Waves

Abstract

High-order doubly asymptotic open boundaries are developed for the modal equa-
tions of scalar wave equations for a semi-infinite layer with a constant depth and a
circular cavity in a full-plane. The open boundaries are derived in the frequency do-
main as doubly asymptotic continued fraction solutions for the dynamic stiffness of
the unbounded domains. Each term of the continued fraction is a linear function of
the excitation frequency. The coefficients of the continued fraction solutions are de-
termined recursively. The continued fraction solution is expressed in the time domain
as ordinary differential equations, which can be solved by standard time-stepping
schemes. No parameters other than the orders of the high- and low-frequency ex-
pansions need to be selected by the user. Numerical experiments demonstrate that
evanescent waves and long-time (low frequency) responses are simulated accurately.
In comparison with singly asymptotic open boundaries, significant gain in accuracy
is achieved at no additional computational cost.

3.1 Introduction

When wave propagation problems are modeled, it is often necessary to introduce an
artificial boundary around the region of interest so that the size of computational
domain is limited to allow the application of well-established numerical methods
such as the finite element method. The region exterior to the artificial boundary is
regarded as an unbounded domain. A boundary condition mimicking the unbounded
domain has to be enforced on the artificial boundary to prevent fictitious reflections
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that pollute the solution. A direct time-domain formulation of the boundary condi-
tion is required when nonlinearities occur in the region of interest. Such a boundary
condition is known by various names such as absorbing, non-reflecting, open, radi-
ation, transmitting and transparent boundary conditions. Extensive literature on
various artificial boundaries exists. Excellent literature reviews are available in pa-
pers (Luco, 1982; Kausel, 1988; Givoli, 1991; Tsynkov, 1998; Astley, 2000; Givoli,
2004) and books (Wolf, 1985, 1988; Givoli, 1992a; Wolf and Song, 1996).

In theory, an exact artificial boundary is global in space and time, i.e. the
present response at a point on the boundary is a function of the response history at
all boundary points up to the present time. When a rigorous method (for example,
the boundary element method (Hall and Oliveto, 2003; Beskos, 1987), the thin-layer
method (Kausel, 1994) or the scaled boundary finite element method (Wolf and
Song, 1996; Song and Wolf, 1997) is employed to construct an artificial boundary, the
formulation is global. The convolution integral and storage of the response history
are computationally expensive for large-scale problems and long-time calculations.

Time realization techniques have been proposed to construct temporally local ar-
tificial boundaries from the dynamic stiffness matrices obtained at discrete frequen-
cies from analytical solution or by a rigorous method. In Wolf (1991), Paronesso and
Wolf (1995), and Alpert et al. (2002), a Padé approximation of the dynamic stiffness
matrix is constructed by using a curve fitting technique based on the least-squares
method. A temporally local artificial boundary is formulated after expressing the
Padé approximation as unit fractions. In Ruge et al. (2001), the Padé approxi-
mation is expressed as a continued fraction leading to a mixed-variable method.
In Paronesso and Wolf (1998), system theory is applied to construct a temporally
local artificial boundary from the unit-impulse response obtained from the scaled
boundary finite element method.

Moreover, a large number of approximate artificial boundary conditions have
been developed. Well-known examples include the viscous boundary (Lysmer and
Kuhlemeyer, 1969), the superposition boundary (Smith, 1974), the paraxial bound-
ary (Engquist and Majda, 1979) and the extrapolation boundary (Liao and Wong,
1984). Generally speaking, they are spatially and temporally local, i.e. the response
at a point is coupled with the response at a few adjacent points during a few previous
time steps only. These local artificial boundaries are simple and computationally
efficient by themselves, but have to be applied to an artificial boundary sufficiently
away from the region of interest in order to obtain results of acceptable accuracy.
This increases the total computational effort.

To increase the accuracy and efficiency of simple artificial boundaries, high-order
local absorbing boundaries have been proposed. This type of absorbing boundary
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has the potential of leading to accurate results as the order of approximation in-
creases. At the same time, it is computationally efficient owing to its local formu-
lation. Examples of early developments include the paraxial boundary (Engquist
and Majda, 1979), the Bayliss, Gunzburger and Turkel (BGT) boundary (Bayliss
et al., 1982) and the multi-direction boundary (Higdon, 1986). However, the order of
derivative in these formulations increases with the order of the absorbing boundary.
Beyond the second order, the implementation in a finite-element computer program
becomes complex and instability may occur (Wolf, 1988).

Researchers in several fields have shown their strong interest in developing ab-
sorbing boundaries of arbitrarily high order (see, e.g. Hagstrom and Hariharan
(1998), Grote and Keller (2000), Guddati and Tassoulas (2000), Thompson et al.
(2001), Krenk (2002), Givoli and Neta (2003), and Hagstrom and Warburton (2004)).
Literature reviews are available, e.g., in Tsynkov (1998) and Givoli (2004). Most
of the absorbing boundaries are, however, limited to straight, circular and spherical
boundaries. Special corner conditions have to be devised for rectangular boundaries.
Krenk (Krenk, 2002) showed that several of well-established absorbing boundaries
can be formulated as a rational function approximation (Padé or continued fraction
expansion) of the plane wave representation for scalar waves.

All the above high-order absorbing boundaries were constructed to absorb prop-
agating waves radiating energy. As they are singly asymptotic at the high-frequency
limit, these high-order absorbing boundaries are appropriate for radiative fields, i.e.,
virtually all of the field energy is propagating out to infinity (Geers, 1998). In some
classes of applications, a part of the total energy may be trapped near the region
of interest and may not propagate to infinity. The best-known example is probably
the evanescent waves occurring in a semi-infinite layer with a constant depth (also
known as a waveguide). It is explained in Hagstrom et al. (2008) that inclusion of
evanescent modes improves the accuracy of the long-time behavior of a high-order
absorbing boundary. Another example is the class of problems where the dimen-
sionless frequency a0 = ωr0/c (ω is the smallest excitation frequency of interest, r0

is a characteristic length of the region of interest, c is the wave velocity) is very
low (statics can be regarded as the limiting case a0 → 0). These wave fields are
largely non-radiative. To achieve reasonably accurate results at low frequencies, i.e.,
over long time, the order of an absorbing boundary has to be very high, thereby
leading to large computational cost. In most of the publications on high-order ab-
sorbing boundaries, the numerical results are shown for only the first few periods,
and long-time responses are rarely reported.

From an application point of view, it is highly desirable to develop a temporally
local absorbing boundary that is capable of accurately mimicking an unbounded
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domain over the entire frequency range (i.e. from zero to infinity). One advance
toward this objective is the introduction of the doubly asymptotic boundaries (Geers,
1978; Underwood and Geers, 1981; Geers and Zhang, 1994; Geers and Lewis, 1997;
Geers, 1998). This formulation is spatially global as the dynamic stiffness is exact
not only at the high-frequency limit but also at statics. To the knowledge of the
authors, the highest order reported is three (Geers and Toothaker, 2000).

Recently, a new approach to construct temporally local transmitting boundaries
of arbitrarily high order has been proposed in Bazyar and Song (2008). It is applica-
ble to both scalar and vector waves. The geometry of the boundary of the unbounded
domain can be arbitrary as long as the scaling requirement (there exists a zone from
where the whole boundary is visible) is satisfied. Anisotropic unbounded media
are handled without additional computation cost. Different from most of existing
approaches, it seeks a continued fraction solution for the equation of the dynamic
stiffness matrix of an unbounded domain obtained in the scaled boundary finite
element method (Song and Wolf, 1997). Each term of the continued fraction is a
linear function of the excitation frequency ω. The constant matrices in the continued
fraction are determined recursively by satisfying the scaled boundary finite element
equation at the high-frequency limit. No explicit solution of the dynamic stiffness
matrix at discrete frequencies is required. By using the continued fraction solution,
the force-displacement relationship of the unbounded domain is formulated as a tem-
porally local transmitting boundary condition in the time domain. However, like
other high-order absorbing boundaries, this transmitting boundary is inappropriate
to model evanescent waves, and the convergence rate at low frequencies is much
slower than that at high frequencies.

In this chapter, a technique for constructing a high-order doubly asymptotic open
boundary is proposed by extending the work of Bazyar and Song (2008). Only scalar
waves and unbounded domains with simple geometry, namely a semi-infinite layer
with a constant depth (a waveguide) and a circular cavity in a full-plane, are consid-
ered. Nevertheless, the artificial boundaries for these cases can be applied directly
to solve practical problems by introducing straight or circular artificial boundaries
(Hagstrom and Hariharan, 1998; Grote and Keller, 2000; Thompson et al., 2001;
Alpert et al., 2002; Hagstrom et al., 2008). The investigations into the simple cases
also provide insights into the basic numerical phenomena involved in high-order
absorbing boundaries such as the failure in representing evanescent waves and the
relative poor performance at low frequencies. Furthermore, a novel approach to
develop accuracy and efficient open boundaries is proposed.

This chapter is organized as follows: in Section 3.2, the scalar wave equation is
decomposed into a series of one-dimensional wave equations by applying the method

59



of separation of variables. After the dynamic stiffness coefficient of a one-dimensional
wave problem is introduced, an equation of the dynamic stiffness coefficient is de-
rived. In Section 3.3, a doubly asymptotic continued fraction solution for the dy-
namic stiffness coefficient is determined recursively at the high- and low-frequency
limits. The link between the singly asymptotic high-frequency solution for the semi-
infinite layer and several other high-order absorbing boundaries based on Padé (or
continued fraction) expansions is identified. In Section 3.4, an equation of motion of
an unbounded domain is formulated on the boundary by using the doubly asymp-
totic continued fraction solution of dynamic stiffness. It leads to a temporally local
open boundary expressed in time-independent stiffness and damping matrices. Well-
established time-stepping schemes in structural dynamics are directly applicable. In
Section 3.5, the high performance of the proposed high-order doubly asymptotic
open boundaries is demonstrated with numerical examples. In Section 3.6, conclu-
sions are presented.

3.2 Dynamic stiffness of unbounded domains

The linear homogeneous scalar wave equation is expressed as

∇2u =
1

c2
s

ü (3.2.1)

where u = u(x, y, z, t) denotes the wave field, ∇2 the Laplace operator and cs the
given wave speed. In this section, the arguments of functions are omitted for simplic-
ity in the nomenclature. The initial conditions for an unbounded domain initially
at rest are expressed as

u = u̇ = 0 at t = 0 (3.2.2)

The geometries and boundary conditions of the semi-infinite layer and the cir-
cular cavity are given in Sections 3.2.1 and 3.2.2, respectively. By employing the
method of separation of variables, Eq. (3.2.1) can be transformed to a series of
one-dimensional wave equations. From a one-dimensional wave equation and the
definition of a dynamic stiffness coefficient, an equation of the dynamic stiffness
coefficient is then derived.
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3.2.1 Semi-infinite layer with constant depth

A semi-infinite layer with a constant depth h is shown in Fig. 3.2.1. For conve-
nience, the x-axis of the coordinate system is chosen at the lower boundary of the
layer. The formulation of the proposed open boundaries is based on the dynamic
stiffness representing the property of the semi-infinite layer. It is independent of the
coordinate system. The open boundaries are applicable to semi-infinite layers of any
orientation. It is assumed that a distributed traction τ0(t) is applied to the vertical
boundary ΓV (at x = x0). The homogeneous boundary conditions prescribed on the
parallel upper boundary ΓU and lower boundary ΓL are satisfied in the method of
separation of variables by eigenfunctions. For example, when the upper boundary ΓU

is free (i.e. u,y (y = h) = 0) and the lower boundary ΓL is fixed (i.e. u(y = 0) = 0)
the eigenfunctions are sin(λiy/h) where the eigenvalues are equal to λi = (2i+1)π/2

for i = 0, 1, . . .. Note that as the eigenvalue λi increases, the eigenfunction varies
more rapidly along the vertical boundary.

h

ΓL

ΓU

ΓV

x

y

+∞

Figure 3.2.1: Semi-infinite layer with constant depth

For a mode with a modal eigenvalue λ, the one-dimensional wave equation is
expressed as

∂2ũ

∂x2
−
(

λ

h

)2

ũ =
1

c2
s

¨̃u (3.2.3)

where ũ = ũ(x, t) is the modal displacement. The modal traction is denoted as τ̃0(t)

at x = x0. Once the solution of Eq. (3.2.3) satisfying both the boundary condition
at x = x0 and the radiation condition at x → +∞ is known, the solution for the
wave propagation in the semi-infinite layer can be obtained by modal superposition.
Hereafter, only the modal equation in Eq. (3.2.3) is addressed, and the word “modal”
is omitted for the sake of simplicity except where confusion may arise.

By assuming the time-harmonic behavior ũ = Ũ(ω, x)e+iωt and τ̃0(t) = R̃(ω, x)e+iωt

(ω is the excitation frequency), Eq. (3.2.3) is rewritten in the frequency domain as

d2Ũ

dx2
+

1

h2

(
a2

0 − λ2
)
Ũ = 0 (3.2.4)
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where Ũ = Ũ(ω, x) is the displacement amplitude, and a0 is a dimensionless fre-
quency

a0 =
ωh

cs

(3.2.5)

3.2.1.1 Analytical solution

The solution of Eq. (3.2.4) satisfying the radiation condition for the semi-infinite
layer extending to x → +∞ (Fig. 3.2.1) is

Ũ = Ce−
√

λ2−a2
0x/h (3.2.6)

with the integration constant C. A cut-off frequency exists in Eq. (3.2.6) at the
dimensionless frequency a0 = λ. Below the cut-off frequency, i.e. a0 < λ, the
displacement decays exponentially. No propagating waves exist, in other words,
evanescent waves are present. Above the cut-off frequency, i.e. a0 > λ, Eq. (3.2.6)
describes a wave propagating with a frequency-dependent phase velocity.

For the semi-infinite layer extending to the right-hand side, the force amplitude
R̃ = R̃(ω, x) on a vertical boundary at arbitrary x is expressed as

R̃ = −h
dŨ

dx
(3.2.7)

Substituting Eq. (3.2.6) into Eq. (3.2.7) results in

R̃ = −h
dŨ

dx
= C

√
λ2 − a2

0e
−
√

λ2−a2
0x/h (3.2.8)

The open boundary condition is represented as a force-displacement relationship. In
the frequency domain, this relationship is defined by the dynamic stiffness coefficient
S = S(ω, x) at a vertical line with a constant x−coordinate

R̃ = SŨ (3.2.9)

It is analogous to the DtN operator (Givoli, 1999). The solution for the dynamic
stiffness coefficient can be obtained from its definition in Eq. (3.2.9) with the sub-
stitution of Eqs. (3.2.6) and (3.2.8)

S(a0) =
√

λ2 − a2
0 (3.2.10)
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Note that the dynamic stiffness coefficient S(a0) is only a function of the dimension-
less frequency a0 and is independent of the value of the x coordinate (Eq. (3.2.5)).
Below the cut-off frequency, i.e. a0 < λ, S(a0) is a real number whereas the imagi-
nary part representing radiation damping vanishes. At the cut-off frequency a0 = λ,
S(a0) is equal to zero representing the resonance of the semi-infinite layer. Above the
cut-off frequency, i.e. a0 > λ, S(a0) is pure imaginary. Equation (3.2.10) normalized
by the modal eigenvalue λ is the square-root operator widely used in constructing
open boundaries

S(a0)

λ
=

√
1 −
(a0

λ

)2

(3.2.11)

To obtain a reference solution to validate numerical results in the time domain,
the response to a unit impulse of traction τ̃0I(t) = δ(t) (δ(t) represents the Dirac-
delta function) applied at x = x0 is evaluated. The amplitude of the displacement
response ŨI is determined from Eqs. (3.2.10) and (3.2.9) with the Fourier transform
of the unit impulse R̃0I = 1

ŨI =
1√

λ2 − a2
0

(3.2.12)

The unit-impulse response ũI(t) is equal to the inverse Fourier transform of ŨI (Eq.
(3.2.12))

ũI(t) =
c

h
J0

(
λ

ct

h

)
H(t) (3.2.13)

where J0 is the zero order first kind Bessel function, H(t) is the Heaviside-step
function (H(t < 0) = 0, H(t ≥ 0) = 1), and t̄ = ct/h represents the dimensionless
time. At large time (t̄ � 1), the asymptotic solution of the unit-impulse response
is expressed as

ũI(t) →
√

2h

πλct
cos

(
λ

ct

h
− π

4

)
(3.2.14)

It oscillates at a period of T = 2πh/(λc). This period corresponds to the dimen-
sionless cut-off frequency a0 = λ where the dynamic stiffness coefficient is equal to
zero. The unit-impulse response exhibits a long-lasting oscillation with a very slow
decay rate of

√
T/t (see Fig. 3.5.7 in Section 3.5.1).
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The displacement response to a prescribed traction τ̃0(t) is expressed as a con-
volution integral

ũ(t) =
c

h

∫ t

0

J0

(
λ

c(t − τ)

h

)
τ̃0(τ)dτ (3.2.15)

3.2.1.2 Equation of dynamic stiffness coefficient

An equation of the dynamic stiffness coefficient is derived from the wave equation and
the definition of the dynamic stiffness coefficient. Eliminating the force amplitude
R̃ from Eqs. (3.2.7) and (3.2.9) leads to

h
dŨ

dx
= −SŨ (3.2.16)

Differentiating Eq. (3.2.16) with respect to x and multiplying the result by h yield

h2 d2Ũ

dx2
= −Sh

dŨ

dx
− h

dS

dx
Ũ =

(
S2 − h

dS

dx

)
Ũ (3.2.17)

Substituting Eq. (3.2.17) into Eq. (3.2.4) multiplied by h2 results, for an arbitrary
Ũ , in

S2 − dS

dx
+ a2

0 − λ2 = 0 (3.2.18)

As both a0 (Eq. (3.2.5)) and the eigenvalue λ are independent of x, the dynamic
stiffness coefficient is a function of a0 only, i.e., dS/dx = 0. Equation (3.2.18) is,
therefore, rewritten as

(S(a0))
2 + a2

0 − λ2 = 0 (3.2.19)

Its positive solution is given in Eq. (3.2.10).

3.2.2 Circular cavity embedded in full-plane

The scalar wave propagation in a full-plane with a circular cavity of radius r0 (Fig.
3.2.2) is addressed. A surface traction τ0(t) is applied on the boundary Γ. Applying
the method of separation of variables to the scalar wave equation in polar coordinates
r, θ leads to a series of wave equations in the radial direction

r2 d2ũ

dr2
+ r

dũ

dr
− λ2ũ =

(
r

cs

)2

¨̃u (3.2.20)
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where ũ = ũ(r, t) is the modal displacement, λ is the modal eigenvalue. The modal
traction is denoted as τ̃0(t) at r = r0. In the frequency domain (Ũ = Ũ(ω, r) is the
displacement amplitude), Eq. (3.2.20) is expressed as a Bessel equation of order λ

r2 d2Ũ

dr2
+ r

dŨ

dr
+

((
ωr

cs

)2

− λ2

)
Ũ = 0 (3.2.21)

u0 u
�zr

r0

r

�

Figure 3.2.2: Circular cavity embedded in full-plane

3.2.2.1 Analytical solution

The solution of Eq. (3.2.21) satisfying the radiation condition is the second-kind
Hankel function of order λ

Ũ = CH
(2)
λ (a) (3.2.22)

with the dimensionless variable

a = a(ω, r) =
ωr

cs

(3.2.23)

and the integration constant C. The force amplitude R̃ = R̃(ω, r) on a circle of
radius r is expressed as

R̃ = −r
dŨ

dr
(3.2.24)

Substituting Eq. (3.2.22) into Eq. (3.2.24) results in

R̃ = −Cr
dH

(2)
λ (a)

dr
(3.2.25)
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The dynamic stiffness coefficient S = S(ω, r) relating the force amplitude to the
displacement amplitude on a circle of radius r is defined as

R̃ = SŨ (3.2.26)

It is obtained from Eqs. (3.2.26), (3.2.25) and (3.2.22) and expressed as

S(a) = − a

H
(2)
λ (a)

dH
(2)
λ (a)

da
= λ − H

(2)
λ−1(a)

H
(2)
λ (a)

(3.2.27)

Note that the only independent variable is the dimensionless variable a. The dy-
namic stiffness coefficient on the boundary Γ of the circular cavity is determined by
evaluating S(a) at r = r0.

3.2.2.2 Equation of dynamic stiffness coefficient

To derive an equation of the dynamic stiffness coefficient S = S(ω, r), the force
amplitude R̃ is eliminated from Eqs. (3.2.24) and (3.2.26). This leads to

r
dŨ

dr
= −SŨ (3.2.28)

Differentiating Eq. (3.2.28) and multiplying the resulting expression by r result in

r2 d2Ũ

dr2
+ r

dŨ

dr
= −Sr

dŨ

dr
− r

dS

dr
Ũ =

(
S2 − r

dS

dr

)
Ũ (3.2.29)

Substituting Eq. (3.2.29) into Eq. (3.2.21) and then eliminating Ũ lead to an equation
of the dynamic stiffness coefficient

S2 − r
dS

dr
+
(ωr

c

)2

− λ2 = 0 (3.2.30)

Changing the independent variable from r to the dimensionless variable a (Eq.
(3.2.23)) yields

(S(a))2 − a
dS(a)

da
+ a2 − λ2 = 0 (3.2.31)

The number of independent variables is now reduced from two (ω and r) to one
(a). To construct an open boundary, it is sufficient to consider the dynamic stiffness
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coefficient on the boundary Γ. Equation (3.2.31) is thus expressed at r = r0 as

(S(a0))
2 − a0

dS(a0)

da0

+ a2
0 − λ2 = 0 (3.2.32)

with the dimensionless frequency

a0 =
ωr0

cs

(3.2.33)

3.2.3 Comparison between dynamic stiffness coefficients of

semi-infinite layer and circular cavity

The dynamic stiffness coefficients of the semi-infinite layer and the circular cavity
are normalized with the eigenvalue λ to examine their interrelationship. Equation
(3.2.19) is thus rewritten as(

S(a0)

λ

)2

+
(a0

λ

)2

− 1 = 0 (3.2.34)

and Eq. (3.2.32) as(
S(a0)

λ

)2

− 1

λ

(a0

λ

) d

d(a0/λ)

(
S(a0)

λ

)
+
(a0

λ

)2

− 1 = 0 (3.2.35)

Equation (3.2.35) can be regarded as an ordinary differential equation of S(a0)/λ

with the independent variable a0/λ. The contribution of its second term decreases
as λ increases. At the limit of λ → ∞, the ordinary differential equation in Eq.
(3.2.35) degenerates to the algebraic equation in Eq. (3.2.34). Therefore, the dy-
namic stiffness coefficient of a mode of the circular cavity tends to that of a mode of
the semi-infinite layer with the same eigenvalue λ (Eq. (3.2.11)). This is illustrated
in Fig. 3.2.3 by comparing the normalized dynamic stiffness coefficient S(a0)/λ of
the cylindrical cavity (Eq. (3.2.27) with a = a0 on boundary) for modes λ = 20,
200 and 2000 with the dynamic stiffness coefficient of the semi-infinite layer (Eq.
(3.2.11)). As λ increases, the dynamic stiffness coefficient of the cylindrical cavity
approaches that of the semi-infinite layer (a0 = ωh/cs). At λ = 2000, the two
dynamic stiffness coefficients become nearly indistinguishable.
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Figure 3.2.3: Comparison among dynamic stiffness coefficients of circular cavity and
semi-infinite layer: (a) real part and (b) imaginary part

3.3 Doubly asymptotic continued fraction solution

for dynamic stiffness

A continued fraction solution of the dynamic stiffness coefficient is obtained recur-
sively in the work of Bazyar and Song (2008) as a singly asymptotic solution at the
high-frequency limit (ω → +∞). It is shown for the circular cavity problem that the
solution converges rapidly to the exact solution when the order of continued fraction
increases and the dimensionless frequency is larger than the modal eigenvalue λ. At
lower frequency range, the error increases significantly and the convergence is much
slower. As it will be demonstrated in Section 3.5.1, the high-frequency continued
fraction solution does not converge at all for the semi-infinite layer problem when
the frequency is below the cut-off frequency.
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A doubly asymptotic continued fraction solution is developed to improve the
behavior of the singly asymptotic solution. After the high-frequency continued frac-
tion solution is determined as in the work of Bazyar and Song (2008) the differential
equation of the residual term is solved again as a continued fraction, but the con-
stants are determined at the low-frequency limit (ω → 0).

Equation (3.2.19) for the semi-infinite layer is an algebraic equation, and Eq. (3.2.32)
for the circular cavity is an ordinary differential equation. They are addressed in
Sections 3.3.1 and 3.3.2, respectively.

3.3.1 Semi-infinite layer with constant depth

3.3.1.1 High-frequency continued fraction

The construction of the high-frequency continued fraction solution for Eq. (3.2.19)
follows the procedure in the work of Bazyar and Song (2008). In this particular
case, an order MH continued fraction solution is expressed as

S(a0) = (ia0)C∞ − λ2

(ia0)Y
(1)
1 − λ2

(ia0)Y
(2)
1 − λ2

· · · − λ2

(ia0)Y
(MH)
1 − λ2

Y (MH+1)(a0)

(3.3.1)

where the constants C∞ and Y
(i)
1 (i = 1, 2, . . . , MH) are determined by satisfying

Eq. (3.2.19) at the high-frequency limit (a0 → +∞). The negative sign in front of
each term is selected intentionally so that the open boundary can be easily expressed
with symmetric coefficient matrices (see Section 3.4). Equation (3.3.1) is equivalent
to

S(a0) = (ia0)C∞ − λ2(Y (1)(a0))
−1 (3.3.2a)

Y (i)(a0) = (ia0)Y
(i)
1 − λ2(Y (i+1)(a0))

−1 (i = 1, 2, . . . , MH) (3.3.2b)

where Y (1)(a0) is of the order (ia0)
−1 as a0 → +∞. When a singly asymptotic

solution is considered, the residual term λ2(Y (MH+1)(a0))
−1 is neglected.

Substituting Eq. (3.3.2a) into Eq. (3.2.19) results in an equation in terms of a
power series of (ia0)

(ia0)
2
(
C2

∞ − 1
)

+ λ2
(−1 − 2(ia0)C∞(Y (1)(a0))

−1 + λ2(Y (1)(a0))
−2
)

= 0 (3.3.3)
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This equation is satisfied by setting, in descending order, the two terms to zero.
The first term is an equation for damping coefficient C∞. To satisfy the radiation
condition, the positive solution is chosen

C∞ = 1 (3.3.4)

The second term of Eq. (3.3.3) is an equation of Y (1)(a0) as C∞ is known (Eq.
(3.3.4)). To derive a recursive formula for determining the constants of the continued
fraction, it is rewritten as the i = 1 case of

λ2 − 2b
(i)
1 (ia0)Y

(i)(a0) − (Y (i)(a0))
2 = 0 (3.3.5)

with the constant

b
(1)
1 = 1 (3.3.6)

Substituting Eq. (3.3.2b) into Eq. (3.3.5) leads to an equation in terms of a power
series of (ia0)

− (ia0)
2
(
(Y

(i)
1 )2 + 2b

(i)
1 Y

(i)
1

)
+ λ2 (1 + 2(ia0)(Y

(i)
1 + b

(i)
1 )(Y (i+1)(a0))

−1

− λ2(Y (i+1)(a0))
−2
)

= 0 (3.3.7)

Again, this equation is satisfied by setting the two terms to zero. The non-zero
solution of the (ia0)

2 term is equal to

Y
(i)
1 = −2b

(i)
1 (3.3.8)

By using the solution of Y
(i)
1 in Eq. (3.3.8), the second term of Eq. (3.3.7) is rear-

ranged as

λ2 + 2b
(i)
1 (ia0)Y

(i+1)(a0) − (Y (i+1)(a0))
2 = 0 (3.3.9)

Introducing the recursive formula for updating the constant

b
(i+1)
1 = − b

(i)
1 (3.3.10)

70



Equation (3.3.9) is simply the (i + 1) case of Eq. (3.3.5). From Eqs. (3.3.6) and
(3.3.10),

b
(i)
1 = (−1)i+1 (3.3.11)

applies. Y
(i)
1 is obtained explicitly from Eq. (3.3.8) as

Y
(i)
1 = (−1)i2 (3.3.12)

The high-frequency continued fraction solution in Eq. (3.3.1) (or Eq. (3.3.2)) is
constructed from the solutions of the constants C∞ in Eq. (3.3.4) and Y

(i)
1 in Eq.

(3.3.12). For example, Eq. (3.3.1) is expressed for the order MH = 2 high-frequency
continued fraction as

S(a0) = (ia0) − λ2

−2(ia0) − λ2

2(ia0) − λ2

Y (3)(a0)

(3.3.13)

3.3.1.2 Link with other absorbing boundaries for plane waves

The singly asymptotic continued fraction solution in Eq. (3.3.1) is expressed by using
Eqs. (3.3.4) and (3.3.12) as

S(a0)

(ia0)
= 1 − (λ/(ia0))

2

−2 − (λ/(ia0))
2

2 − (λ/(ia0))
2

−2 − . . .

= 1 +
(λ/(ia0))

2

2 +
(λ/(ia0))

2

2 +
(λ/(ia0))

2

2 + . . .

= 1 − (λ/a0)
2

2 − (λ/a0)
2

2 − (λ/a0)
2

2 − . . .
(3.3.14)

Several absorbing boundaries have been constructed based on the continued frac-
tions of the function

√
1 + x, where x may represent the wave number, pseudo-

differential operator or the angle of incidence of a plane wave depending on the
particular formulation. For example, the third approximation expressed in Eq. 1.13
of Engquist and Majda (1977) is based on the continued fraction

√
1 + x = 1 +

x

2 +
x

2

(3.3.15)

When x = (λ/ia0)
2 = −(λ/a0)

2 is assumed, Eq. (3.3.15) is equivalent to the second
order singly asymptotic continued fraction in Eq. (3.3.14).
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It has been shown by Krenk (2002) that, when all the angles of ideal transmission
are selected as 0, the multi-directional absorbing boundary proposed by Higdon
(1987) corresponds to the continued fraction of cos θ =

√
1 − sin2 θ (Eq. 15 of

Krenk (2002))

cos θ = 1 − sin2 θ

2 − sin2 θ

2 − sin2 θ

2 − . . .

(3.3.16)

where θ is the angle of incidence (the angle between the direction of propagation
of a plane wave and the outward normal of the boundary). Equation (3.3.16) is
equivalent to Eq. (3.3.15) for the same order of continued fraction when x = − sin2 θ

is assumed. By comparing Eq. (3.3.14) to Eq. (3.3.16), it can be identified that the
two equations are identical when setting

sin θ = λ/a0 (3.3.17)

Equation (3.3.17) relates the dimensionless frequency a0 to the angle of incidence θ.
As sin θ is bounded between 0 and 1, the performance of absorbing boundaries

based on this continued fraction is controlled for a0 ≥ λ, i.e. above the cut-off
frequency, only. Their accuracy below the cut-off frequency (a0 < λ), i.e. for
the evanescent waves, is not guaranteed. This is illustrated in Fig. 3.3.1 by com-
paring the continued fraction solution with the exact solution (Eq. (3.2.10)). The
dynamic stiffness coefficient and the dimensionless frequency are normalized as ex-
pressed in Eq. (3.2.11). When the frequency is slightly above the cut-off frequency
(a0/λ > 1.25), the order MH = 2 continued fraction solution is already very accu-
rate. However, the error below the cut-off frequency is very large. The imaginary
part exhibits a discontinuous point. The real part of the continued fraction solution
is always equal to zero independent of the order as expected from Eq. (3.3.13). As
the order of the continued fraction increases to MH = 5 and MH = 11, the accuracy
of the results at frequencies immediately above the cut-off frequency improves. The
result of MH = 11 is indistinguishable from the exact solution above the cut-off
frequency. Below the cut-off frequency, the number of discontinuous points in the
imaginary part increases and the accuracy does not improve. The error at the low-
frequency range affects the accuracy of late-time response in the time domain as
illustrated numerically in Section 3.5.1.
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Figure 3.3.1: High-frequency continued fraction solution for dynamic stiffness co-
efficient of semi-infinite layer: (a) real part and (b) imaginary part

A reflection coefficient based on the angle of incidence of propagating plane
waves is often derived in the literature to evaluate the performance of an absorbing
boundary. It is meaningful for only 0 ≤ sin θ ≤ 1, i.e., the frequency range a0 ≥ λ.
As the order increases, the reflection coefficient becomes smaller but the accuracy
below the cut-off frequency does not necessarily improve. This is consistent with
the statement in Hagstrom et al. (2008) that: “a comparison of boundary conditions
based solely on the magnitude of reflection coefficients for propagating modes is a
poor predictor of actual performance, particularly as the order is increased”.

3.3.1.3 Doubly asymptotic continued fraction

The procedure in Section 3.3.1.1 leads to not only a high-frequency continued frac-
tion solution for the dynamic stiffness coefficient but also an equation of the residual
term Y (MH+1)(a0), i.e. the i = MH + 1 case of Eq. (3.3.5) with the constant b

(MH+1)
1
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given in Eq. (3.3.11). To determine a solution that is valid over the whole frequency
range, a low-frequency continued fraction solution for the residual term Y (MH+1)(a0)

is sought.
Denoting the residual term as

YL(a0) = Y (MH+1)(a0) (3.3.18)

the i = MH + 1 case of Eq. (3.3.5) is expressed as

λ2 − 2bL(ia0)YL(a0) − (YL(a0))
2 = 0 (3.3.19)

with the constant

bL = b
(MH+1)
1 = (−1)MH (3.3.20)

given in Eq. (3.3.11). The continued fraction solution for YL(a0) at the low-frequency
limit is written as

YL(a0) = Y
(0)
L0 + (ia0)Y

(0)
L1 − (ia0)

2

Y
(1)
L0 − (ia0)

2

Y
(2)
L0 − (ia0)

2

. . . − (ia0)
2

Y
(ML)
L0

(3.3.21)

It is equivalent to

YL(a0) = Y
(0)
L0 + (ia0)Y

(0)
L1 − (ia0)

2(Y
(1)
L (a0))

−1 (3.3.22a)

Y
(i)
L (a0) = Y

(i)
L0 − (ia0)

2(Y
(i+1)
L (a0))

−1 (i = 1, 2, . . . , ML) (3.3.22b)

where the constant term in Eq. (3.3.22b) is omitted as its solution is equal to zero.
For an ML order continued fraction, the residual (ia0)

2/Y
(i+1)
L (a0) is neglected. The

constants Y
(i)
L0 (i = 1, 2, . . . , ML) and Y

(0)
L1 are determined by satisfying Eq. (3.3.19)

at the low frequency limit (a0 → 0).
Substituting Eq. (3.3.22a) into Eq. (3.3.19) leads to an equation in terms of a

power series of (ia0)(
λ2 − (Y

(0)
L0 )2

)
− (ia0)

(
2bLY

(0)
L0 + 2Y

(0)
L0 Y

(0)
L1

)
+ (ia0)

2
(
−2bLY

(0)
L1 − (Y

(0)
L1 )2

+ 2(Y
(0)
L0 + (ia0)(Y

(0)
L1 + bL))(Y

(1)
L (a0))

−1 − (ia0)
2(Y

(1)
L (a0))

−2
)

= 0 (3.3.23)
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As the low-frequency solution is being sought, Eq. (3.3.23) is satisfied by setting the
coefficients of the power series to zero in ascending order. Setting the constant term
to zero results in

λ2 − (Y
(0)
L0 )2 = 0 (3.3.24)

Out of the two solutions, the one leading to the correct static stiffness S(a0 = 0) = λ

should be chosen. Inspecting Eq. (3.3.1) with Y (MH+1)(a0 = 0) = YL(a0 = 0) = Y
(0)
L0

(Eqs. (3.3.18) and (3.3.22a)), the solution is

Y
(0)
L0 = (−1)MH+1λ (3.3.25)

Setting the coefficient of the (ia0) term in Eq. (3.3.23) to zero leads to an equation
for Y

(0)
L1 . Using Eq. (3.3.20), its solution is expressed as

Y
(0)
L1 = −bL = (−1)MH+1 (3.3.26)

Setting the coefficient of the (ia0)
2 term in Eq. (3.3.23) to zero yields an equa-

tion of Y
(1)
L (a0). After substituting the solutions for Y

(0)
L0 (Eq. (3.3.25)) and Y

(0)
L1

(Eq. (3.3.26)), the equation is expressed as the i = 1 case of the following equation:

(ia0)
2 − 2b

(i)
L Y

(i)
L (a0) − (Y

(i)
L (a0))

2 = 0 (3.3.27)

with the constant (Eq. (3.3.20))

b
(1)
L = −bLλ = (−1)MH+1λ (3.3.28)

A recursive procedure for determining the constants Y
(i)
L0 in Eq. (3.3.22b) is estab-

lished by substituting Eq. (3.3.22b) into Eq. (3.3.27). The resulting expression is
arranged as

−
(
2b

(i)
L Y

(i)
L0 + (Y

(i)
L0 )2

)
+ (ia0)

2 (1 + 2(b
(i)
L + Y

(i)
L0 )(Y

(i+1)
L (a0))

−1

− (ia0)
2(Y

(i+1)
L (a0))

−2
)

= 0 (3.3.29)

Setting the term independent of (ia0) to zero yields an equation for Y
(i)
L0 . Its non-zero

solution is

Y
(i)
L0 = −2b

(i)
L (3.3.30)
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Setting the (ia0)
2 term to zero and using Eq. (3.3.30) result in the equation of

Y
(i+1)
L (a0)

(ia0)
2 + 2b

(i)
L Y

(i+1)
L (a0) − (Y

(i+1)
L (a0))

2 = 0 (3.3.31)

It is simply the (i + 1) case of Eq. (3.3.27) with the constant

b
(i+1)
L = −b

(i)
L (3.3.32)

Equations (3.3.28) and (3.3.32) lead to

b
(i)
L = (−1)MH+iλ i = 1, 2, . . . ML (3.3.33)

The constants of the continued fraction are expressed explicitly as

Y
(i)
L0 = (−1)MH+i+12λ i = 1, 2, . . . ML (3.3.34)

As an example, the order ML = 2 low-frequency continued fraction for the
residual Y (3)(a0) of the order MH = 2 high-frequency continued fraction solution is
expressed as

Y (3)(a0) = YL(a0) = −λ − (ia0) − (ia0)
2

2λ − (ia0)
2

−2λ

(3.3.35)

The doubly asymptotic continued fraction solution is constructed by combining
the high-frequency continued fraction solution in Eq. (3.3.1) (or Eq. (3.3.2)) with the
low-frequency solution in Eq. (3.3.21) (or Eq. (3.3.22)) using Y (MH+1)(a0) = YL(a0)

(Eq. (3.3.18)). For example, the order MH = ML = 2 doubly asymptotic continued
fraction solution is obtained from Eqs. (3.3.13) and (3.3.35) as

S(a0) = (ia0) − λ2

−2(ia0) − λ2

2(ia0) − λ2

−λ − (ia0) − (ia0)
2

2λ − (ia0)
2

−2λ

(3.3.36)

The real and imaginary parts of the order MH = ML = 2 doubly asymptotic solu-
tion are compared with the exact solution in Fig. 3.3.2. The present result is very
accurate outside of a small range around the cut-off frequency.
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Figure 3.3.2: Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient of semi-infinite layer with MH = ML = 2: (a) real part and
(b) imaginary part

Further evaluation of the accuracy of the doubly asymptotic solution is reported
in Section 3.5.1.

3.3.2 Circular cavity embedded in full-plane

3.3.2.1 High-frequency continued fraction

Like the continued fraction solution in Eq. (3.3.2) for the semi-infinite layer, the
high-frequency continued fraction is expressed as

S(a0) = K∞ + (ia0)C∞ − (Y (1)(a0))
−1 (3.3.37a)

Y (i)(a0) = Y
(i)
0 + (ia0)Y

(i)
1 − (Y (i+1)(a0))

−1 (i = 1, 2, . . . , MH) (3.3.37b)

where C∞ is the damping coefficient, K∞ the spring coefficient and (Y (1)(a0))
−1 the

residual term. Substituting Eq. (3.3.37a) into Eq. (3.2.31) yields an equation in
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terms of a power series of (ia0),

(ia0)
2(C2

∞− 1)+ (ia0)(2C∞K∞−C∞)+
(
K2

∞ −λ2 − 2((ia0)C∞ +K∞)(Y (1)(a0))
−1

+ (Y (1)(a0))
−2 − a0(Y

(1)(a0))
−2Y (1)(a0),a0

)
= 0 (3.3.38)

This equation is satisfied by setting each term to zero in descending order of (ia0).
The (ia0)

2 term leads to an equation of C∞. Its positive solution (satisfying the
radiation condition) is equal to

C∞ = 1 (3.3.39)

The (ia0) term leads to an equation of K∞. By using Eq. (3.3.39), its solution is
expressed as

K∞ = 0.5 (3.3.40)

The remaining term is an equation of Y (1)(a0) representing the residual

K2
∞ − λ2 − 2((ia0)C∞ + K∞)(Y (1)(a0))

−1 + (Y (1)(a0))
−2

− a0(Y
(1)(a0))

−2Y (1)(a0),a0 = 0 (3.3.41)

Equation (3.3.41) is simplified by multiplying it with (Y (1)(a0))
2 and using the solu-

tions of C∞ (Eq. (3.3.39)) and K∞ (Eq. (3.3.40)). To construct a recursive procedure,
the resulting equation is expressed as the i = 1 case of

a(i) − 2(b
(i)
0 + (ia0))Y

(i)(a0) + c(i)(Y (i)(a0))
2 − a0(Y

(i)(a0)),a0 = 0 (3.3.42)

with the coefficients defined as

a(1) = 1 (3.3.43a)

b
(1)
0 = 0.5 (3.3.43b)

c(1) = 0.25 − λ2 (3.3.43c)
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A recursive equation for determining the remaining constants in the continued
fraction solution is obtained by substituting Eq. (3.3.37b) into Eq. (3.3.42)

(ia0)
2
(
−2Y

(i)
1 + c(i)(Y

(i)
1 )2

)
+ (ia0)

(
−2Y

(i)
0 − 2b

(i)
0 Y

(i)
1 + 2c(i)Y

(i)
0 Y

(i)
1 − Y

(i)
1

)
+
(
a(i) − 2b

(i)
0 Y

(i)
0 + c(i)(Y

(i)
0 )2 + (−2c(i)(Y

(i)
0 + (ia0)Y

(i)
1 )

+ 2((ia0) + b
(i)
0 ))(Y (i+1)(a0))

−1 + c(i)(Y (i+1)(a0))
−2

− (Y (i+1)(a0))
−2a0(Y

(i+1)(a0)),a0

)
= 0 (3.3.44)

This series equation in terms of (ia0) is satisfied by setting the individual terms to
zero in descending order of (ia0). The (ia0)

2 term leads to an equation of Y
(i)
1 . Its

non-zero solution is equal to

Y
(i)
1 = 2/c(i) (3.3.45)

Setting the (ia0) term in Eq. (3.3.44) to zero yields an equation of Y
(i)
0 . By using

Eq. (3.3.45), its solution is obtained as

Y
(i)
0 = (2b

(i)
0 + 1)/c(i) (3.3.46)

The remaining term is written as

a(i) + Y
(i)
0 − 2(c(i)Y

(i)
0 − b

(i)
0 + (ia0)(c

(i)Y
(i)
1 − 1))(Y (i+1)(a0))

−1

+ c(i)(Y (i+1)(a0))
−2 − (Y (i+1)(a0))

−2a0(Y
(i+1)(a0)),a0 = 0 (3.3.47)

Using Eqs. (3.3.45) and (3.3.46), Eq. (3.3.47) is rewritten as an equation of Y (i+1)(a0),

c(i) − 2(b
(i)
0 + 1 + (ia0))Y

(i+1)(a0) + (a(i) + Y
(i)
0 )(Y (i+1)(a0))

2

− a0(Y
(i+1)(a0)),a0 = 0 (3.3.48)

Introducing the recursive formula for the following coefficients:

a(i+1) = c(i) (3.3.49a)

b
(i+1)
0 = b

(i)
0 + 1 (3.3.49b)

c(i+1) = a(i) + Y
(i)
0 (3.3.49c)

Equation (3.3.48) is formulated as the i + 1 case of Eq. (3.3.42). The constants Y
(i)
1

and Y
(i)
0 (i = 1, 2, . . . , MH) of the singly asymptotic continued fraction solution
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are thus determined recursively. By combining Eqs. (3.3.43b) and (3.3.49b), the
constant b

(i)
0 can be expressed explicitly as

b
(i)
0 = i − 0.5 (3.3.50)

For later use, the following identity is derived from Eqs. (3.3.49), (3.3.46) and
(3.3.43)

(b
(i+1)
0 )2 − a(i+1)c(i+1) = (b

(i)
0 + 1)2 − c(i)a(i) − c(i)Y

(i)
0 = (b

(i)
0 )2 − a(i)c(i) = λ2

(3.3.51)

As an example, the constants of the order MH = 2 continued fraction solution
are evaluated

Y
(1)
0 =

8

1 − 4λ2
; Y

(1)
1 =

8

1 − 4λ2
(3.3.52a)

Y
(2)
0 =

4 − 16λ2

9 − 4λ2
; Y

(2)
1 =

2 − 8λ2

9 − 4λ2
(3.3.52b)

Together with the constants C∞ and K∞ given in Eqs. (3.3.39) and (3.3.40), the
singly asymptotic solution is obtained after neglecting (Y (3)(a0))

−1. The normalized
dynamic stiffness coefficient S(a0)/λ of mode λ = 20 is plotted as a function of the
dimensionless frequency a0/λ in Fig. 3.3.3. Although it is highly accurate at high
frequencies (a0/λ > 1.25), the error increases as the frequency becomes lower. Below
the frequency a0/λ < 1, very large error exists. Unlike the case of the semi-infinite
layer, the singly asymptotic solution converges to the exact solution over the whole
range of frequency. As shown in Fig. 3.3.3, an accurate result is obtained at the
order MH = 9. The rate of convergence close to a0 = 0 is much slower than that at
the high-frequency range. As it will be demonstrated in Section 3.5.2, the rate of
convergence deteriorates as the modal eigenvalue increases.
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Figure 3.3.3: High-frequency continued fraction solution for dynamic stiffness coef-
ficient of circular cavity (λ = 20): (a) real part and (b) imaginary
part

3.3.2.2 Doubly asymptotic continued fraction

Y (MH+1)(a0) represents the residual of the order MH high-frequency continued frac-
tion. It satisfies Eq. (3.3.48) with i = MH and the coefficients in Eq (3.3.49). To
facilitate the derivation of the low-frequency continued fraction solution, Eq. (3.3.48)
is rewritten as

aL − 2(bL0 + (ia0))YL(a0) + cL(YL(a0))
2 − a0(YL(a0)),a0 = 0 (3.3.53)

where the function is

YL(a0) = Y (MH+1)(a0) (3.3.54)

and the constants are

aL = a(MH+1) (3.3.55a)

bL0 = b
(MH+1)
0 = MH + 0.5 (3.3.55b)

cL = c(MH+1) (3.3.55c)

The continued fraction solution at low frequencies is expressed as

YL(a0) = Y
(0)
L0 + (ia0)Y

(0)
L1 − (ia0)

2(Y
(1)
L (a0))

−1 (3.3.56a)

Y
(i)
L (a0) = Y

(i)
L0 + (ia0)Y

(i)
L1 − (ia0)

2(Y
(i+1)
L (a0))

−1 (i = 1, 2, . . . , ML) (3.3.56b)
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Substituting Eq. (3.3.56a) into Eq. (3.3.53) yields an equation in terms of a power
series of (ia0)(

aL − 2bL0Y
(0)
L0 + cL(Y

(0)
L0 )2

)
+ (ia0)

(
−2Y

(0)
L0 − 2bL0Y

(0)
L1 + 2cLY

(0)
L0 Y

(0)
L1 − Y

(0)
L1

)
+ (ia0)

2
(
−2Y

(0)
L1 + cL(Y

(0)
L1 )2 + (2(bL0 + (ia0)) − 2cL(Y

(0)
L0 + (ia0)Y

(0)
L1 ))

× (Y
(1)
L (a0))

−1 + 2(Y
(1)
L (a0))

−1 + (ia0)
2cL(Y

(1)
L (a0))

−2

− (Y
(1)
L (a0))

−2a0(Y
(1)
L (a0)),a0

)
= 0 (3.3.57)

It is satisfied by setting the terms to zero in ascending order of (ia0). The constant
term yields

aL − 2bL0Y
(0)
L0 + cL(Y

(0)
L0 )2 = 0 (3.3.58)

By using Eqs. (3.3.51) and (3.3.55), the determinant of this quadratic algebraic
equation is equal to

(2bL0)
2 − 4aLcL = 4λ2 (3.3.59)

The solution for Y
(0)
L0 is expressed as

Y
(0)
L0 = (bL0 + λ)/cL = (MH + 0.5 + λ)/cL (3.3.60)

Setting the (ia0) term of Eq. (3.3.57) to zero leads to an equation of Y
(0)
L1 . By using

Eq. (3.3.60), its solution is equal to

Y
(0)
L1 = 2Y

(0)
L0 /(2λ − 1) (3.3.61)

Setting the remaining term of Eq. (3.3.57) to zero results in an equation of Y
(1)
L (a0).

It is denoted as the i = 1 case of

(ia0)
2a

(i)
L − 2(b

(i)
L0 + b

(i)
L1(ia0))Y

(i)
L (a0) + c

(i)
L (Y

(i)
L (a0))

2 − a0(Y
(i)
L (a0)),a0 = 0 (3.3.62)
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where the following constants are defined and simplified using Eqs. (3.3.60) and
(3.3.61) as:

a
(1)
L = cL (3.3.63a)

b
(1)
L0 = −1 − bL0 + cLY

(0)
L0 = −1 + λ (3.3.63b)

b
(1)
L1 = −1 + cLY

(0)
L1 = 2(MH + 1)/(2λ − 1) (3.3.63c)

c
(1)
L = −2Y

(0)
L1 + cL(Y

(0)
L1 )2 (3.3.63d)

Substituting Eq. (3.3.56b) into Eq. (3.3.62) results in an equation in terms of a
power series of (ia0)(

−2b
(i)
L0Y

(i)
L0 + c

(i)
L (Y

(i)
L0 )2

)
+ (ia0)

(
−2(b

(i)
L1Y

(i)
L0 + b

(i)
L0Y

(i)
L1 ) + 2c

(i)
L Y

(i)
L0 Y

(i)
L1 − Y

(i)
L1

)
+ (ia0)

2
(
a

(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2 − 2(−1 − b

(i)
L0 + c

(i)
L Y

(i)
L0

+ (ia0)(−b
(i)
L1 + c

(i)
L Y

(i)
L1 ))(Y

(i+1)
L (a0))

−1 + (ia0)
2c

(i)
L (Y

(i+1)
L (a0))

−2

− (Y
(i+1)
L (a0))

−2a0(Y
(i+1)
L (a0)),a0

)
= 0 (3.3.64)

Setting the individual terms to zero in ascending order of (ia0) leads to the equations
of Y

(i)
L0 , Y

(i)
L1 and Y

(i+1)
L (a0), respectively. The constant term independent of (ia0)

yields an equation of Y
(i)
L0 . Its non-zero solution is equal to

Y
(i)
L0 = 2b

(i)
L0/c

(i)
L (3.3.65)

The (ia0) term is an equation for Y
(i)
L1 . By using Eq. (3.3.65), its solution is expressed

as

Y
(i)
L1 = 2b

(i)
L1Y

(i)
L0 /(−1 + 2b

(i)
L0) (3.3.66)

The last term of Eq. (3.3.64) results in an equation of Y
(i+1)
L (a0)

(ia0)
2c

(i)
L − 2(−1 − b

(i)
L0 + c

(i)
L Y

(i)
L0 + (ia0)(−b

(i)
L1 + c

(i)
L Y

(i)
L1 ))Y

(i+1)
L (a0)

+ (a
(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2)(Y

(i+1)
L (a0))

2 − a0(Y
(i+1)
L (a0)),a0 = 0 (3.3.67)
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Introducing the recursive equations

a
(i+1)
L = c

(i)
L (3.3.68a)

b
(i+1)
L0 = −1 − b

(i)
L0 + c

(i)
L Y

(i)
L0 = −1 + b

(i)
L0 (3.3.68b)

b
(i+1)
L1 = −b

(i)
L1 + c

(i)
L Y

(i)
L1 (3.3.68c)

c
(i+1)
L = a

(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2 (3.3.68d)

with the expression of b
(i+1)
L0 simplified by using Eq. (3.3.65), Eq. (3.3.67) is expressed

as the (i + 1) case of Eq. (3.3.62). With the combination of Eqs. (3.3.63b) and
(3.3.68b), the constant b

(i)
L0 is expressed as

b
(i)
L0 = −i + λ (3.3.69)

The doubly asymptotic solution can now be determined by combining the high-
frequency continued fraction solution in Eq. (3.3.37) with the low-frequency con-
tinued fraction solution in Eq. (3.3.56) using Y (MH+1)(a0) = YL(a0) (Eq. (3.3.54)).
As an example, the low-frequency continued fraction is determined for the residual
term of the MH = 2 high-frequency continued fraction. The result of order ML = 2
is

Y
(0)
L0 =

18 − 8λ2

8λ3 − 20λ2 − 2λ+ 5
; Y

(0)
L1 =

−4
(
4λ2 − 9

)
(2λ− 1)2 (4λ2 − 8λ− 5)

(3.3.70a)

Y
(1)
L0 =

(λ− 1)(2λ− 1)3
(
4λ2 − 8λ− 5

)
2 (8λ3 − 28λ2 − 18λ+ 63)

; Y
(1)
L1 =

6(λ− 1)(2λ− 5)(2λ− 1)2(2λ+ 1)
(2λ− 3)2 (4λ2 − 8λ− 21)

(3.3.70b)

Y
(2)
L0 =

−8(λ− 2)(2λ− 7)(2λ− 3)3

(2λ− 1)3 (8λ3 − 52λ2 + 62λ+ 45)
; Y

(2)
L1 =

−96(λ− 2)(2λ− 7)(2λ− 3)2

(2λ− 5)2(2λ− 1)3 (4λ2 − 16λ− 9)
(3.3.70c)

The result of the order MH = ML = 2 doubly asymptotic solution for the mode
λ = 20 is plotted in Fig. 3.3.4. Compared with the order MH = 5 singly asymptotic
solution, which has the same number of terms, the doubly asymptotic solution is
much more accurate.
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Figure 3.3.4: Dynamic stiffness coefficient of circular cavity (λ = 20): (a) real part
and (b) imaginary part

3.4 Doubly asymptotic open boundary condition

In the frequency domain, the open boundary condition is expressed as the force-
displacement relationship (Eqs. (3.2.9) and (3.2.26))

R̃ = S(a0)Ũ (3.4.1)

When the dynamic stiffness coefficient S(a0) is expressed as a continued fraction
solution, the force-displacement relationship can be formulated in the time domain
as a system of first-order ordinary differential equations with time-independent co-
efficient matrices, which represents a temporally local open boundary.

A doubly asymptotic continued fraction solution, which includes the expressions
for the semi-infinite layer and circular cavity as special cases, is considered

S(a0) = K∞ + (ia0)C∞ − m2(Y (1)(a0))
−1 (3.4.2a)

Y (i)(a0) = Y
(i)
0 + (ia0)Y

(i)
1 − m2(Y (i+1)(a0))

−1 (i = 1, 2, . . . , MH) (3.4.2b)

YL(a0) = Y (MH+1)(a0) (3.4.2c)

YL(a0) = YL0 + (ia0)YL1 − (ia0)
2(Y

(1)
L (a0))

−1 (3.4.2d)

Y
(i)
L (a0) = Y

(i)
L0 + (ia0)Y

(i)
L1 − (ia0)

2(Y
(i+1)
L (a0))

−1 (i = 1, 2, . . . , ML) (3.4.2e)

with the dimensionless frequency

a0 =
ωr0

cs

(3.4.3)
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For the semi-infinite layer (Eqs. (3.3.2) and (3.3.22)), K∞ = Y
(i)
0 = Y

(i)
L1 = 0 and

m = λ applies. The characteristic length r0 in Eq. (3.4.3) is replaced with the depth
h. For the circular cavity (Eqs. (3.3.37) and (3.3.56)), m = 1 applies. Substituting
Eq. (3.4.2a) into the force-displacement relationship in Eq. (3.4.1) leads to

R̃ = S(a0)Ũ = K∞Ũ + (ia0)C∞Ũ − mŨ (1) (3.4.4)

where the auxiliary variable Ũ (1) is defined as

Ũ (1) = m(Y (1)(a0))
−1Ũ (3.4.5)

and then reformulated as

mŨ = Y (1)(a0)Ũ
(1) (3.4.6)

which is in the same form as the force-displacement relationship (Eq. (3.4.1)). Sim-
ilarly, an auxiliary variable is introduced for each term of continued fraction in Eq.
(3.4.2b)

mŨ (i) = Y (i+1)(a0)Ũ
(i+1) (i = 0, 1, 2, . . . , MH) (3.4.7)

where Eq. (3.4.6) is included as the i = 0 case with Ũ (0) = Ũ . Multiplying
Eq. (3.4.2b) by Ũ (i) and using the definition of auxiliary variables in Eq. (3.4.7)
formulated with i and i − 1 result in

mŨ (i−1) = Y
(i)
0 Ũ (i) + (ia0)Y

(i)
1 Ũ (i) − mŨ (i+1) (i = 1, 2, . . . , MH) (3.4.8)

The residual Ũ (MH+1) of an order MH high-frequency continued fraction solution is
expressed in Eq. (3.4.7) at i = MH as

mŨ (MH) = Y (MH+1)(a0)Ũ
(MH+1) (3.4.9)

Y (MH+1)(a0) = YL(a0) (Eq. (3.4.2c)) is expressed in Eq. (3.4.2d) as a low-frequency
continued fraction solution. Multiplying Eq. (3.4.2d) by Ũ (MH+1) and using Eqs. (3.4.2c)
and (3.4.9) lead to

mŨ (MH) = YL0Ũ
(MH+1) + (ia0)YL1Ũ

(MH+1) − (ia0)Ũ
(1)
L (3.4.10)
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where the auxiliary variable Ũ
(1)
L is defined in

(ia0)Ũ
(MH+1) = Y

(1)
L (a0)Ũ

(1)
L (3.4.11)

Again, an auxiliary variable is introduced for each term of the continued fraction in
Eq. (3.4.2e) as

(ia0)Ũ
(i)
L = Y

(i+1)
L (a0)Ũ

(i+1)
L (i = 0, 1, 2, . . . , ML) (3.4.12)

with Ũ
(0)
L = Ũ (MH+1). Multiplying Eq. (3.4.2e) by Ũ

(i)
L and using Eq. (3.4.12) with

i − 1 and i yield

(ia0)Ũ
(i−1)
L = Y

(i)
L0 Ũ

(i)
L + (ia0)Y

(i)
L1 Ũ

(i)
L − (ia0)Ũ

(i+1)
L (i = 1, 2, . . . , ML) (3.4.13)

For the order ML low-frequency solution, the approximation Ũ
(ML+1)
L = 0 is intro-

duced.
Equations (3.4.4), (3.4.8), (3.4.10) and (3.4.13) are all combined to form a matrix

equation

([Kh] + (iω)[Ch]){Z} = {F} (3.4.14)

with

{Z} = [Ũ , Ũ (1), · · · , Ũ (MH), Ũ (MH+1), Ũ
(1)
L , · · · , Ũ

(ML)
L ]T (3.4.15a)

{F} = [R̃, 0, · · · , 0, 0, 0, · · · , 0]T (3.4.15b)
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[Kh] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∞ −m

−m Y
(1)
0

. . .
. . . . . . −m

−m Y
(MH)
0 −m

−m YL0 0

0 Y
(1)
L0

. . .
. . . . . . 0

0 Y
(ML)
L0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4.15c)

[Ch] =
r0

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∞ 0

0 Y
(1)
1

. . .
. . . . . . 0

0 Y
(MH)
1 0

0 YL1 −1

−1 Y
(1)
L1

. . .
. . . . . . −1

−1 Y
(ML)
L1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4.15d)

The function {Z} includes the displacement amplitude on the boundary and all the
auxiliary variables, and the only non-zero entry at the right-hand side {F} is the
excitation force R̃ on the boundary. Note that Eq. (3.4.3) is substituted into the
equation to replace (ia0) with (iω). The time-independent matrices [Kh] and [Ch]

are banded and symmetric. Equation (3.4.14) is expressed in the time domain as

[Kh]{z(t)} + [Ch]{ż(t)} = {f(t)} (3.4.16)

It represents a temporally local high-order open boundary applicable to one mode of
wave propagation in a semi-infinite layer with a constant depth or a circular cavity
in a full-plane.

This chapter is limited to develop and evaluate the high-order open boundary
for one mode of wave propagation. The implementation of such an open boundary
in the finite element method has been well documented, for example, in Thompson
et al. (2001), and Birk and Ruge (2007)and will not be repeated herein.

3.5 Numerical examples

The accuracy of the proposed doubly asymptotic open boundaries is evaluated in
this section. Newmark’s method with γ = 0.5 and β = 0.25 (average acceleration
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scheme) is employed for the time integration (see Section A.2 in Appendix A). The
size of the time step is chosen as Δt = 0.01h/(λc) for the semi-infinite layer and
Δt = 0.01r0/(λc) for the circular cavity.

When the present doubly asymptotic open boundary is employed, the only two
parameters for the users to select are the orders of high- and low-frequency continued
fractions MH and ML. In this section, the same value is chosen for both parameters.
With this simple, although not necessarily optimal, choice, the doubly asymptotic
open boundaries perform much better than the singly asymptotic open boundaries
with the same number of terms do.

The excitation by a unit impulse of traction τ̃0I(t) = δ(t) is chosen to evaluate
the accuracy of open boundaries as it covers the whole frequency range. When a
unit impulse is applied, the initial condition is obtained by integrating Eq. (3.4.16)
with the matrix [Ch] given in Eq. (3.4.15d) (Note that the first entry of {f(t)} and
{z(t)} is τ̃0I(t) and ũ(t), respectively.)

ũ(t = 0) = c/(r0C∞) (3.5.1)

In the case of semi-infinite layer, r0 in Eq. (3.5.1) is replaced with the depth h of
the layer.

To investigate the performance of the open boundary at a specified frequency
range, the surface traction τ̃0(t) is prescribed as a Ricker wavelet with the parameters
t̄s = cts/h = 1, t̄0 = ct0/h = 0.2 and AR = 10. The time history of the Ricker
wavelet and its Fourier transform are given by Eqs. (A.1.1) and (A.1.2), respectively
in Appendix A. The Ricker wavelet is plotted in Fig. 3.5.1(a). The amplitude of its
Fourier transform is plotted in Fig. 3.5.1(b). The dominant dimensionless frequency
of this wavelet is a0 = 10.
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Figure 3.5.1: Prescribed traction as Ricker wavelet: (a) time history and (b) Fourier
transform

3.5.1 Semi-infinite layer with constant depth

The case of a semi-infinite layer with a constant depth is a stringent test due to
the existence of a cut-off frequency. Since the dynamic stiffness is not smooth at
the cut-off frequency, this case is especially challenging for the doubly asymptotic
continued fraction solution. At the cut-off frequency, the dynamic stiffness is equal
to zero. As a result, waves around the cut-off frequency decay at a very slow rate
(Eq. (3.2.14)). This requires that an absorbing boundary has to be accurate over
a large time duration. The investigation of the semi-infinite layer is also significant
because the construction of several higher-order absorbing boundaries is related to
this case as shown in Section 3.3.1.2.

The performance of the singly asymptotic open boundary based solely on the
high-frequency continued fraction solution is evaluated at first. The dynamic stiff-
ness coefficient of the order MH = 5 continued fraction is plotted in Fig. 3.3.1. The
cut-off frequency exists at a0/λ = 1. The large error of the dynamic stiffness coef-
ficient below the cut-off frequency (a0/λ < 1) indicates that the high-order singly
asymptotic open boundary is unable to transmit evanescent waves. This is confirmed
by the unit-impulse response of the MH = 5 open boundary plotted in Fig. 3.5.2.
The early-time (high-frequency) response is very accurate. The response after the
dimensionless time λt̄ > 10 suddenly exhibits a very large error and the amplitude
of the error does not decay with time. Since this phenomenon is very similar to
fictitious reflections caused by enforcing a simple (free or fixed) boundary condition
at a certain distance, it is referred to as “fictitious reflections” in this thesis.
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Figure 3.5.2: Unit-impulse response of semi-infinite layer by singly asymptotic open
boundary MH = 5

The effect of the order of the singly asymptotic open boundary on its accuracy
is also investigated by considering the orders MH = 11 and MH = 99. The order
MH = 11 continued fraction solution has 12 terms (double the number of terms of
the MH = 5 solution). The order MH = 99 solution has 100 terms. The dynamic
stiffness coefficients of both open boundaries are indistinguishable from the exact
solution above the cut-off frequency as shown in Fig. 3.3.1 for the MH = 11 solution
(The dynamic stiffness coefficient of the MH = 99 open boundary is not plotted).
The unit-impulse responses of both open boundaries are shown in Fig. 3.5.3. As the
order increases, the accuracy improves. However, significant “fictitious reflections”
still occur, albeit at later time, even at order MH = 99. As the amplitude of
the “fictitious reflections” does not decay with time, the singly asymptotic open
boundary is unsuitable for the analysis of long-time response.
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Figure 3.5.3: Unit-impulse response of semi-infinite layer by singly asymptotic open
boundary: (a) MH = 11 and (b) MH = 99

The defect of the singly asymptotic open boundary in representing low-frequency
responses can be mended by employing the doubly asymptotic continued fraction
solution in Section 3.3.1.3. The corresponding higher-order doubly asymptotic open
boundary is constructed in Section 3.4. For the MH = ML = 2 doubly asymptotic
open boundary, whose dynamic stiffness coefficient is shown in Fig. 3.3.2, the unit-
impulse response is plotted in Fig. 3.5.4. It decays gradually and no “fictitious
reflection” appears. It is observed by comparing Fig. 3.5.4 with Fig. 3.5.2 that the
MH = ML = 2 open boundary is much more accurate than the MH = 5 open
boundary after λt̄ > 10, although the number of equations of both formulations is
equal to 5.
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ũ I

(t̄)
/(

c s
/h

)

DIMENSIONLESS TIME λt̄ = λtcs/h

MH = ML = 2
EXACT

Figure 3.5.4: Unit-impulse response of semi-infinite layer by doubly asymptotic open
boundary with MH = ML = 2

The accuracy of the doubly asymptotic open boundary improves rapidly as its
order increases. This is demonstrated by using the order MH = ML = 5 open
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boundary. Its dynamic stiffness coefficient is plotted in Fig. 3.5.5. It is indistin-
guishable from the exact solution except for the slight difference close to the cut-off
frequency. The unit-impulse response is shown in Fig. 3.5.6. Good agreement with
the exact solution is observed for about the first 10 periods. Compared with the
unit-impulse response of the MH = 11 open boundary, which has the same number
of variables, in Fig. 3.5.3(a), the doubly asymptotic open boundary is significantly
more accurate at late time. No “fictitious reflection” occurs.
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Figure 3.5.5: Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient of semi-infinite layer with MH = ML = 5: (a) real part and
(b) imaginary part
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Figure 3.5.6: Unit-impulse response of semi-infinite layer by doubly asymptotic open
boundary with MH = ML = 5

To further investigate the convergence of the doubly asymptotic open boundary,
a long-time analysis, with a duration of λtc/h = 200π, of the unit-impulse response
is performed. As the period of the asymptotic solution of the unit-impulse response
is λtc/h = 2π, this duration corresponds to 100 periods of vibration. The amplitude
of the unit-impulse response decays from 1 at t = 0 to about 0.032. The result of
the MH = ML = 24 open boundary is plotted in Fig. 3.5.7(a). The unit-impulse
response decays gradually and no “fictitious reflections” occur. The numerical result
is indistinguishable from the exact solution at the early stage (Fig. 3.5.7(b)) and
in the middle of the duration (Fig. 3.5.7(c)). At the end of the duration, the error
is merely about 0.0015. Thus, the MH = ML = 24 open boundary is sufficiently
accurate for most engineering applications.
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Figure 3.5.7: Unit-impulse response of semi-infinite layer by doubly asymptotic open
boundary with MH = ML = 24

The response to a surface traction prescribed as the Ricker wavelet shown in
Fig. 3.5.1 (t̄s = cts/h = 1, t̄0 = ct0/h = 0.2) is computed for three modes λ = 5,
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10 and 15. It is similar to the analysis of the semi-infinite layer by using modal
superposition. The same amplitude of surface traction AR = 10 is assumed for
all the three modes. The ratios between the dominate dimensionless frequencies
to the modal eigenvalues are a0/λ = 2, 1 and 2/3, respectively. The responses of
the MH = ML = 24 doubly asymptotic open boundary are plotted in Fig. 3.5.8.
Very good agreement is observed for all the three modes. For comparison, the
responses of the MH = 99 singly asymptotic open boundary are also shown. As its
dynamic stiffness coefficient is very accurate above the cut-off frequency (a0 > λ),
the response for the mode λ = 5 (the ratio a0/λ = 2) is very accurate (Fig. 3.5.8(a))
with only a small error after t̄ > 45. As the mode increases, the “fictitious reflections”
appear. For the mode λ = 15 (the ratio a0/λ = 0.5), the amplitude of the “fictitious
reflections” is very large. In addition, the “fictitious reflections” arrive earlier as the
modal eigenvalue increases.
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ũ(
t̄)/

(c
s/

h)

DIMENSIONLESS TIME λt̄ = λtcs/h

MH = ML = 24
MH = 99
EXACT

(b)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 10 20 30 40

D
IS

PL
A

C
EM

EN
T

ũ(
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Figure 3.5.8: Response of semi-infinite layer to traction varying as Ricker wavelets
by doubly asymptotic open boundary with MH = ML = 24: (a) λ = 5,
(b) λ = 10 and (c) λ = 15

3.5.2 Circular cavity embedded in full-plane

As shown in Bazyar and Song (2008), the high-frequency continued fraction solution
for the dynamic stiffness coefficient converges to the exact solution for a circular
cavity. As the modal eigenvalue increases, the rate of convergence decreases. This is
consistent with the observation by Thompson et al. (2001), and Harari and Djellouli
(2004) that the accuracy of high-order absorbing boundaries deteriorates as the
modal eigenvalue increases.

It has been shown in Section 3.5.1 for the semi-infinite layer case that the high-
order doubly asymptotic open boundary can effectively eliminate the “fictitious re-
flections” occurring in the singly asymptotic open boundary. As illustrated in Section
3.2.3, the dynamic stiffness coefficient of a mode of the circular cavity approaches
that of the semi-infinite layer as the modal eigenvalue increases. It is thus expected
the same advantage of the high-order doubly asymptotic open boundary exists when
a mode of circular wave with a large eigenvalue is analyzed.

The mode λ = 200 is, for example, addressed. The dynamic stiffness coefficient of
the MH = ML = 5 open boundary is shown in Fig. 3.5.9. Excellent agreement with
the exact solution is obtained. The singly asymptotic continued fraction solution
with the same number of terms (MH = 11) leads to a significant error below the
cut-off frequency. Only when the order is higher than 32, the singly asymptotic
solution is accurate over the whole frequency range. The same is also observed for
the unit-impulse response plotted in Fig. 3.5.10.
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Figure 3.5.9: Dynamic stiffness coefficient of circular cavity (λ = 200): (a) real part
and (b) imaginary part
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Figure 3.5.10: Unit-impulse response of circular cavity (λ = 200)

The dynamic stiffness coefficient of the mode λ = 2, 000 is plotted in Fig. 3.5.11.
As expected, the accuracy of the singly asymptotic solution deteriorates when the
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modal eigenvalue increases. The result of the order MH = 32 high-frequency con-
tinued fraction solution shows strong oscillation below the cut-off frequency. In
contrast, the result of the order MH = ML = 5 doubly asymptotic continued frac-
tion solution is still very close to the exact solution. Only slight difference is observed
close to the cut-off frequency. Higher accuracy of doubly asymptotic open boundary
is also observed in the unit-impulse response as shown in Fig. 3.5.12. No “fictitious
reflections” occur.
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Figure 3.5.11: Dynamic stiffness coefficient of circular cavity (λ = 2, 000): (a) real
part and (b) imaginary part
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Figure 3.5.12: Unit-impulse response of circular cavity (λ = 2, 000)

The response to a surface traction prescribed as the Ricker wavelet is evaluated.
The parameters are chosen as t̄s = cts/h = 0.01 and t̄0 = ct0/h = 0.002 and AR = λ.
The dominant dimensionless frequency is equal to a0 = 1, 000, which corresponds to
the period of T = 0.002π. The results of open boundaries for the modes λ = 200 and
2, 000 are compared with the exact solutions in Fig. 3.5.13. For the mode λ = 200,
the ratio of dominant dimensionless frequency a0 to the eigenvalue λ = 200 is equal
to a0/λ = 5. As shown in Fig. 3.5.11, both the MH = 32 singly asymptotic solution
and the MH = ML = 5 doubly asymptotic solution are highly accurate around this
frequency. The responses of both open boundaries agree very well with the exact
solution as shown in Fig. 3.5.13(a). For the mode λ = 2, 000, the ratio of dominant
dimensionless frequency a0 to the eigenvalue λ = 2, 000 becomes a0/λ = 0.5. The
MH = 32 singly asymptotic solution for the dynamic stiffness coefficient shows
strong oscillation around the exact solution (Fig. 3.5.11). This leads to the “fictitious
reflections” in the transient response in Fig. 3.5.13(b). Reasonably accurate response
is obtained by using the MH = ML = 5 doubly asymptotic open boundary.
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Figure 3.5.13: Response of circular cavity to traction varying as Ricker wavelets: (a)
λ = 200 and (b) λ = 2, 000

In a real finite-element analysis, the number of modes (eigenvalues) is often not
easy to control. An open boundary should perform well for all modes, including
those with very high eigenvalues, at the frequency range of interest. The above
example demonstrates that a robust open boundary should ideally perform well for
the case of semi-infinite layer with a constant depth.

3.6 Conclusions

A novel approach for constructing high-order doubly asymptotic open boundaries of
arbitrary order has been proposed. The derivation and implementation are presented
for the transient analysis of scalar waves in a semi-finite layer with a constant depth
and a circular cavity in a full-plane. It is found from theoretical formulations and
numerical experiments that

1. When a high-order open boundary for the semi-infinite layer with a constant
depth is based solely on a high-frequency continued fraction expansion of
the dynamic stiffness, i.e., singly asymptotic, it is equivalent to several well-
established high-order absorbing boundaries. A singly asymptotic open bound-
ary performs satisfactorily when the dimensionless frequency (ia0) content of
the excitation is mostly higher than the highest modal eigenvalue (λ), but it
is unable to model evanescent waves caused by the part of excitation having
dimensionless frequency lower than the highest modal eigenvalue. In a time-
domain analysis, the error in modeling evanescent waves appears as numerical
pollution similar to the “fictitious reflections” caused by simple boundary con-
ditions.
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2. As the modal eigenvalue λ of a circular cavity increases, the dynamic stiffness of
the mode tends to that of a mode of a semi-infinite layer. Therefore, a robust
open boundary for circular waves should also be able to model evanescent
waves.

3. The dynamic stiffness of a doubly asymptotic open boundary converges rapidly
to the exact solution in the frequency domain as its order increases. Evanes-
cent waves and late-time (low-frequency) responses are simulated accurately.
The doubly asymptotic open boundary shows significant improvement in accu-
racy in comparison with the singly asymptotic open boundary with the same
number of terms.

4. The high-order doubly asymptotic open boundaries are expressed as first-order
ordinary differential equations in time. The two time-independent coefficient
matrices, the static stiffness and damping matrices, are banded and symmetric.
Well-established time-stepping schemes in structural dynamics are directly
applicable. The amount of computer time and storage are the same as those
required by the singly asymptotic open boundary of the same order.
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Chapter 4

Analysis of Gravity Dam-Reservoir
Interaction Using Doubly
Asymptotic Open Boundary

Abstract

A procedure for the time-domain analysis of gravity dam-reservoir interaction is
proposed. The dam and a part of the reservoir with irregular geometry are modeled
with finite elements. A high-order doubly asymptotic open boundary condition is
developed to model the remaining part of the reservoir simplified as a semi-infinite
layer of a constant depth. This open boundary is temporally local, stable and
converges rapidly as the order increases. It is directly coupled with the commercial
finite element package, ABAQUS by using a sequential staggered implicit-implicit
partition algorithm. Numerical examples demonstrate the high accuracy and long-
time stability of the proposed technique.

4.1 Introduction

The computation of hydrodynamic pressure on dams is necessary and important in
the analysis of dam-reservoir interaction during earthquakes. Research in this area
was pioneered by Westergaard (1933). He derived the analytical solution for a rigid
dam with a vertical upstream surface under a horizontal harmonic ground motion.
The added-mass method originated from his paper has influenced the engineering
design of dams since then. In 1967, Chopra developed an analytical formulation
for the hydrodynamic pressure of compressive water on rigid dam with vertical
upstream face under both horizontal and vertical earthquake excitation. When the
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upstream face of a dam is inclined, water is often simplified as incompressible so
that an analytical solution can be derived. For example, Chwang (1978) presented
an exact solution for a rigid dam with an inclined upstream face of constant slope
by using a two-dimensional potential theory. In the companion paper, Chwang
and Housner (1978) employed the momentum-balance principle to solve the same
problem approximately. As the dam is assumed to be rigid in the above studies, the
effect of dam-reservoir interaction cannot be considered. Chopra and his coworkers
(Chopra (1967); Chakrabarti and Chopra (1973)) and were the first to study the
effects of flexible gravity dam-reservoir interaction by employing the first few modes
of vibration of the dam obtained with an empty reservoir.

Analytical solutions are available only for reservoirs of regular geometries, such
as semi-infinite layers or prisms. When the reservoir geometry is irregular, numerical
methods such as finite element method are necessary to analyze the dam-reservoir
interaction. Substructure method is often applied (see Fig. 4.2.1). The part of
the reservoir with irregular geometry, called near field, is discretized with finite
elements. To reduce the amount of computational cost, the finite element mesh
is truncated at a distance from the dam. The remaining part of reservoir, called
far field, is simplified as a semi-infinite layer with a constant depth. The near
and far fields are coupled at the truncated boundary by satisfying the equations of
motion and continuity. Various methods have been developed to model the far field.
Saini et al. (1978) proposed the infinite element to analyze the two-dimensional
response of reservoir-dam systems subjected to horizontal ground motions. Chopra
and his coworkers (Chopra and Chakrabarti, 1981; Hall and Chopra, 1982) developed
efficient procedures to analyze dam-reservoir interaction in the frequency domain.
The finite element discretization on the truncated boundary was combined with a
continuum representation in the infinite direction of the reservoir.

A direct time-domain analysis is required when the dam exhibits nonlinear ma-
terial behavior, for example, under earthquakes. Zienkiewicz and Bettess (1978)
studied fluid-structure interaction in the time domain by using Sommerfeld radia-
tion condition to approximate the far field. Tsai et al. (1990) proposed an accurate
implicit semi-analytical transmitting boundary in the time domain. Tsai and Lee
(1991) established the corresponding time-domain models for the interaction analysis
of dam-reservoir system by using the substructure method. This approach is tem-
porally global, i.e. requires the evaluation of convolution integrals. It is expensive
in computer time and memory for long-time analyses. To improve its computa-
tional efficiency, Yang et al. (1993) developed the explicit time-domain transmitting
boundary which employed only a few eigenmodes in the evaluation of the convolu-
tion integrals. When the boundary element method (Touhei and Ohmachi, 1993;
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Camara, 2000; Czygan and von Estorff, 2002) is applied to a direct time-domain
analysis, the formulation is spatially and temporally global, which hinders its appli-
cation to long-time computations of large-scale engineering problems.

Since mid-1990s, high-order transmitting boundaries have been proposed for the
scalar wave equation. There is an extensive literature on this subject (see literature
reviews (Tsynkov, 1998; Givoli, 2004)). They are constructed to absorb propagating
waves radiating energy. The formulations are temporally local and more efficient by
themselves than global procedures. They do not suffer from instability plagued ear-
lier high-order transmitting boundaries. For problems of two- and three-dimensional
cavities, they are shown to converge as the order increases. It was demonstrated
in Chapter 3 that these transmitting boundaries are singly asymptotic at the high-
frequency limit. They are efficient for radiative fields where all of the field energy
is propagating out to infinity (Geers, 1998). However, a semi-infinite reservoir with
a constant depth has a cut-off frequency. When the excitation frequency is close to
or below the cut-off frequency, the wave field is not radiative. The high-order trans-
mitting boundaries break down at low frequencies in a frequency domain analysis
or at late times in a time domain analysis (Chapter 3).

One advance towards the modeling of an unbounded domain with possible pres-
ence of non-radiative wave fields is the introduction of doubly asymptotic boundaries
(Geers, 1978; Underwood and Geers, 1981; Geers and Zhang, 1994; Geers and Lewis,
1997; Geers, 1998). The dynamic stiffness of the doubly asymptotic boundaries is se-
lected as to fit the dynamic stiffness of the unbounded domain at the high-frequency
limit and the low-frequency limit (i.e. statics). The resulting formulation is spatially
global. The highest order reported in the literature is three (Geers and Toothaker,
2000). Another technique is the time-domain realization of the dynamic stiffness
obtained in the frequency domain developed by Ruge et al. (2001) and Alpert et al.
(2002). A rational approximation of the dynamic stiffness is constructed by curve-
fitting. When it is transformed to the time domain, a recursive formula is obtained.
Birk and Ruge (2007) applied such a technique to the dam-reservoir interaction
analysis. Accurate results can be obtained for long-time computations, but a curve
fitting by means of a least-squares process has to be performed for each order of the
rational approximation.

Another type of popular techniques for modeling wave propagation is the per-
fectly matched layer (Berenger, 1994; Basu and Chopra, 2004). The performance
of the perfectly matched layer is compared with that of a high-order transmitting
boundary in Alpert et al. (2002). The high-order doubly asymptotic open bound-
ary condition for modal equations of scalar waves has been presented in Chapter
3 by extending the work of Bazyar and Song (2008). It was constructed directly
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from a differential equation of the dynamic stiffness matrix of an unbounded do-
main without evaluating its solution at discrete frequencies. This high-order doubly
asymptotic boundary is capable of accurately mimicking the unbounded domain
over the entire frequency range (i.e. from zero to infinity). For a one-dimensional
problem corresponding to one mode of the horizontal layer, the coefficients of the
open boundary condition are explicitly given. A boundary condition of any order
can be constructed straightforwardly. Excellent accuracy and stability are observed
for long-time transient analyses.

The purpose of this chapter is to extend the doubly asymptotic open boundary
condition in Chapter 3 to the analysis of the hydrodynamic pressure of a semi-
infinite layer with a constant depth. To facilitate the coupling with a commercial
finite element package, the formulation of the open boundary condition is split into
two parts. The first part is shown to be the simple Sommerfeld radiation bound-
ary, also called viscous boundary in the dynamic soil-structure interaction analysis,
which is spatially and temporally local. It can be included in the damping matrix
of the system. The second part includes all the high order terms and is governed by
a system of first-order ordinary differential equations. This part can be interpreted
as external forces applied on the truncated boundary. Applying a sequential stag-
gered implicit-implicit partition algorithm, the external forces are determined by
the responses of the truncated boundary at the previous time station. This formu-
lation does not modify the element connectivity and allows the direct coupling with
a commercial finite element software package supporting two-way data exchange.
This open boundary condition is implemented in the general-purpose finite element
package ABAQUS to analyze gravity dam-reservoir interaction.

This chapter is organized as follows: in Section 4.2, the finite element formu-
lation of dam-reservoir system is addressed. In Section 4.3, the scaled boundary
finite element method is applied to derive a semi-discrete governing equation on the
truncated boundary. In Section 4.4, a modal transformation is performed leading to
a set of uncoupled equations for modal dynamic stiffness. In Section 4.5, the doubly
asymptotic continued fraction solution of the dynamic stiffness is presented. In Sec-
tion 4.6, a high-order doubly asymptotic open boundary condition is constructed by
introducing auxiliary variables. In Section 4.7, the numerical implementation of the
open boundary condition and the coupling with ABAQUS are addressed. In Section
4.8, numerical examples of a rigid dam and a flexible dam are presented. In the last
section, conclusions are presented.
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4.2 Finite element model of dam-reservoir system

A two-dimensional reservoir is addressed (Fig. 4.2.1). The water in the reser-
voir is assumed to be compressible, inviscid and irrotational with a small ampli-
tude movement. The acceleration vector of water particles is denoted as {ü} =

[ üx(x, z, t) üz(x, z, t) ]T and the hydrodynamic pressure as p = p(x, z, t). The
reservoir is divided into a near field including the irregular geometry and a far field
extending to infinity with a constant depth. The dam with possibly nonlinear ma-
terial property and the near-field reservoir are modeled by finite elements. The
hydrodynamic pressure p in the reservoir where the water is treated as acoustic
fluid satisfies the scalar wave equation

�p =
1

c2

∂2p

∂t2
(4.2.1)

with the Laplace operator � and the compression wave velocity

c =

√
K

ρ
(4.2.2)

where K is the bulk modulus of water and ρ is the mass density.
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Figure 4.2.1: Typical gravity dam-reservoir system

On the dam-reservoir interface, the pressure should satisfy the boundary condi-
tion (n stands for the outward normal of the boundary)

∂p

∂n
= −ρün (4.2.3)
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The effect of surface waves on the hydrodynamic pressure on a dam is negligible.
The boundary condition on the free surface is written as

p = 0 (4.2.4)

At the reservoir bottom,

∂p

∂n
= 0 or ün = 0 (4.2.5)

applies. The radiation condition should be satisfied at infinity

∂p

∂n
= − ṗ

c
(4.2.6)

Without considering the material damping, the finite element formulation for
the dam-reservoir system can be partitioned as

⎡⎢⎣ [Ms] 0 0

−[Qfs] [Mff ] [Mfb]

0 [Mbf ] [Mbb]

⎤⎥⎦
⎧⎪⎨⎪⎩

{üs}
{p̈f}
{p̈b}

⎫⎪⎬⎪⎭+

⎡⎢⎣ [Ks] [Qfs] 0

0 [Kff ] [Kfb]

0 [Kbf ] [Kbb]

⎤⎥⎦
⎧⎪⎨⎪⎩

{us}
{pf}
{pb}

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩
{fs}
{ff}
−{r}

⎫⎪⎬⎪⎭ (4.2.7)

where [M ] stands for the mass matrix, [K] for the static stiffness matrix, [Q] for
the coupling matrix between solid and fluid and {f} for the external force vector.
Subscript s denotes degrees of freedom on the dam structure, subscript f denotes the
degrees of freedom of the near-field water except for those on the truncated boundary
that are denoted by the subscript b. Denoting the interaction load applied to the
semi-infinite reservoir by the near-field water as {r}, the external load applied to
the near-field water on the truncated boundary is equal to −{r}. The mass and
stiffness matrices of water is expressed in ABAQUS as

[Mf ] =

∫
vf

1

K
[N ]T [N ]dV (4.2.8)

[Kf ] =

∫
vf

1

ρf

(
∂[N ]T

∂x

∂[N ]

∂x
+

∂[N ]T

∂z

∂[N ]

∂z

)
dV (4.2.9)

{ff} =

∫
sf

1

ρf

[N ]
∂p

∂x
dS (4.2.10)
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where [N ] are the shape functions of finite elements. In order to solve the dam-
reservoir system expressed in Eq. (4.2.7), the relationship between the interaction
load {r} and the hydrodynamic pressure {p} of the semi-infinite reservoir is deter-
mined in the following sections.

4.3 Scaled boundary finite element method for semi-

infinite reservoir with constant depth

The scalar wave equation in a semi-infinite reservoir with a constant depth (far
field) can be solved analytically in the frequency domain by the method of separa-
tion of variables. To facilitate the coupling with the finite elements of the near-field
reservoir, a semi-analytical method is employed in this section. The reservoir is
discretized along its depth by elements that have the same nodes and shape func-
tions as the finite elements. Several derivations leading to similar semi-analytical
approaches exist (see, e.g., Lysmer and Waas (1972); Song and Wolf (1997); Birk
and Ruge (2007)). The scaled boundary finite element method, developed to model
unbounded domains with arbitrary shape (Song and Wolf, 1997), is selected in this
thesis considering the possibility of further extension of the present technique to
problems with more complex geometry. The derivation of scaled boundary finite el-
ement method for elastodynamics is detailed in Song and Wolf (1997) and Wolf and
Song (2000). In this thesis, the derivation is summarized for the two-dimensional
semi-infinite reservoir with a vertical boundary (Fig. 4.3.1(a)). Streamlined expres-
sions are presented for this special case.
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Figure 4.3.1: Semi-infinite reservoir with constant depth: (a) semi-discretization and
(b) typical element

The equation of motion of water without body force is written as

{L}p + ρ{ü} = 0 (4.3.1)

where {L} = [ ∂
∂x

∂
∂z

]T is the differential operator, and the equation of continuity
considering the volumetric stress-strain relationship of compressible water is

{L}T{ü} = − 1

K

∂2p

∂t2
(4.3.2)

The vertical boundary of the semi-infinite reservoir is specified by a constant
coordinate xb. It is discretized by one-dimensional elements (Fig. 4.3.1(a)). A
typical element is shown in Fig. 4.3.1(b). The vertical coordinates of the nodes of
an element in the Cartesian coordinate system are arranged in {zb}. The geometry
of an element is interpolated using the shape functions [N(η)] formulated in the
local co-ordinate η as

zb(η) = [N(η)]{zb} (4.3.3)

The Cartesian coordinates of a point (x, z) inside the semi-infinite reservoir are
expressed as

x(ξ) = xb + ξ (4.3.4a)

z(η) = zb(η) = [N(η)]{zb} (4.3.4b)

where the coordinate ξ is equal to 0 on the vertical boundary. The Jacobian matrix
for the coordinate transformation from (x, z) to (ξ, η) equals

[J(η)] =

[
x,ξ z,ξ

x,η z,η

]
=

[
1 0

0 zb,η

]
(4.3.5)
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For a two-dimensional problem with a unit length in the third dimension,

dV = |J(η)|dξdη (4.3.6)

where |J(η)| is the determinant of the Jacobian matrix. The partial differential
operator defined in Eq. (4.3.1) is expressed as

{L} = [J(η)]−1
[

∂
∂ξ

∂
∂η

]T
= {b1} ∂

∂ξ
+ {b2{η)} ∂

∂η
(4.3.7)

with

{b1} = [ 1 0 ]T (4.3.8a)

{b2(η)} =
1

|J(η)| [ 0 1 ]T (4.3.8b)

The governing differential equations in the local coordinates (ξ, η) are specified by
Eq. (4.3.2) with the differential operator {L} in Eq. (4.3.7).

Along horizontal lines passing through a node on the boundary, the nodal hy-
drodynamic pressure functions {p} = {p(ξ, t)} are introduced. The nodal pressure
on the boundary follows as {pb(t)} = {p(ξ = 0, t)}. Isoparametric elements are used
in the vertical direction. One element Se on the boundary and the corresponding
horizontal strip shown in Fig. 4.3.1(b) are addressed. The hydrodynamic pressure
field p = p(ξ, η, t) is obtained by interpolating the nodal pressure functions

p = [N(η)]{p} (4.3.9)

For acoustic fluid, the relationship between acceleration and pressure is equivalent to
that between stress (or distributed load) and displacement in stress analysis. Sub-
stituting Eqs. (4.3.7) and (4.3.9) into Eq. (4.3.1), the acceleration {ü} = {ü(ξ, η)}
is expressed as

{ü} = −1

ρ
([B1(η)]{p},ξ +[B2(η)]{p}) (4.3.10)

with

[B1(η)] = {b1}[N(η)] (4.3.11a)

[B2(η)] = {b2(η)}[N(η)],η (4.3.11b)
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The Galerkin’s weighted residual method is applied. Equation (4.3.2) is multiplied
by a weight function w = w(ξ, η) and integrated over the semi-infinite strip corre-
sponding to the element (Fig. 4.3.1(b))∫

V

w{b1}T{ü,ξ }dV +

∫
V

w{b2}T{ü,η }dV +

∫
V

w
1

K

∂2p

∂t2
dV = 0 (4.3.12)

Using Eq. (4.3.6) and integrating the second term of Eq. (4.3.12) over η by parts
yield

∫ ∞

0

(∫ +1

−1

(
w{b1}T{ü,ξ } − w,η {b2(η)}T{ü} + w

1

K
p̈

)
|J(η)|dη

+ w{b2(η)}T{ü}|J(η)|∣∣+1

−1

)
dξ = 0 (4.3.13)

Equation (4.3.13) is satisfied by setting the integrand of the integral over ξ equal to
zero∫ +1

−1

(
w{b1}T{ü,ξ } − w,η {b2(η)}T{ü} + w

1

K
p̈

)
|J(η)|dη

+ w{b2(η)}T{ü}|J(η)|∣∣+1

−1
= 0 (4.3.14)

This corresponds to enforcing the scalar wave equation exactly in the horizontal
direction. Note that no volume integrals are present in Eq. (4.3.14).

The weight function is constructed in the same way as the hydrodynamic pressure
(Eq. (4.3.9))

w(ξ, η) = [N(η)]{w(ξ)} (4.3.15)

Substituting Eq. (4.3.15) into Eq. (4.3.14) yields, for arbitrary {w(ξ)},
∫ +1

−1

[B1(η)]T{ü},ξ |J(η)|dη −
∫ +1

−1

[B2(η)]T{ü}|J(η)|dη

+

∫ +1

−1

[N(η)]T
1

K
p̈|J(η)|dη + {T} = 0 (4.3.16)

where {T} is the equivalent nodal acceleration vector resulting from the acceleration
distribution along the top and bottom of the strip

{T} = [N(η)]{b2(η)}T{ü}|J(η)|∣∣+1

−1
(4.3.17)
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Substituting Eq. (4.3.10) into Eq. (4.3.16) leads to the scaled boundary finite element
equation in hydrodynamic pressure

[E0]{p},ξξ −[E2]{p} − [M0]{p̈} − {T} = 0 (4.3.18)

where [E0], [E2] and [M0] are coefficient matrices

[E0] =

∫ +1

−1

[B1(η)]T
1

ρ
[B1(η)]|J(η)|dη =

∫ +1

−1

[N(η)]T
1

ρ
[N(η)]|J(η)|dη (4.3.19a)

[E2] =

∫ +1

−1

[B2(η)]T
1

ρ
[B2(η)]|J(η)|dη =

∫ +1

−1

[N(η)],Tη
1

ρ
[N(η)],η

1

|J(η)|dη

(4.3.19b)

[M0] =

∫ +1

−1

[N(η)]T
1

K
[N(η)]|J(η)|dη =

1

c2
[E0] (4.3.19c)

The horizontal strips corresponding to the individual elements on boundary are
assembled. The nodal acceleration vectors {T} cancel at the common boundaries.
On the bottom of the reservoir, the nodal acceleration vanishes (Eq. (4.2.5)). After
enforcing the boundary condition p(ξ, t) = 0 on the free surface, the scaled boundary
finite element equation for the two-dimensional semi-infinite reservoir with constant
depth is expressed as

[E0]{p},ξξ −[E2]{p} − 1

c2
[E0]{p̈} = 0 (4.3.20)

The standard numerical integration techniques in the finite element method are
directly applicable to evaluate these coefficient matrices. Like the static stiffness
and mass matrices in the finite element method, the coefficient matrices [E0] and
[E2] are sparse and positive definite.

For acoustic fluid, the acoustic nodal load vector {r} = {r(ξ, t)} on a vertical
surface with a constant ξ is expressed as

{r} = −[E0]{p},ξ (4.3.21)

It is the equivalent nodal vector of acceleration distribution based on virtual work
principle. Assuming the time-harmonic response {p(ξ, t)} = {P (ξ, ω)}e+iωt (ω is
the excitation frequency) with the amplitudes of the hydrodynamic pressure {P} =

{P (ξ, ω)}, Eq. (4.3.20) is transformed into the frequency domain as

[E0]{P},ξξ −[E2]{P} +
ω2

c2
[E0]{P} = 0 (4.3.22)
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The amplitudes of the acoustic nodal load {R} = {R(ξ, ω)} ({r(ξ, t)} = {R(ξ, ω)}e+iωt)
are expressed as (Eq. (4.3.21))

{R} = −[E0]{P},ξ (4.3.23)

4.4 Modal decomposition of scaled boundary finite

element equation

The system of ordinary differential equations in Eq. (4.3.22) can be decoupled by
a modal transformation. The modes are obtained from the following generalized
eigenvalue problem (�• stands for a diagonal matrix)

[E2][Φ] = [E0][Φ]�λ2/h2 (4.4.1)

where �λ2 is the diagonal matrix of positive eigenvalues, [Φ] are the eigenvectors
representing the modes, and h is a characteristic length, for example the depth of
the layer, to non-dimensionlize the eigenvalues. The eigenvectors [Φ] are normalized
as

[Φ]T [E0][Φ] = [I] (4.4.2)

Pre-multiplying Eq. (4.4.1) by [Φ]T results in

[Φ]T [E2][Φ] = �λ2/h2 (4.4.3)

It is noted from Eq. (4.4.2) that the inverse of the eigenvector matrix can be obtained
by using the matrix multiplication

[Φ]−1 = [Φ]T [E0] (4.4.4)

The amplitude of the hydrodynamic pressures are expressed as a linear combination
of the eigenvectors

{P} = [Φ]{P̃} (4.4.5)

where {P̃} = {P̃ (ξ, ω)} are the amplitudes of the modal hydrodynamic pressures.
Substituting Eq. (4.4.5) into Eq. (4.3.22) pre-multiplied by [Φ]T and using Eqs.
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(4.4.2) and (4.4.3) lead to a system of decoupled equations

P̃j,ξξ +
1

h2
(a2

0 − λ2
j)P̃j = 0 (4.4.6)

with the dimensionless frequency

a0 =
ωh

c
(4.4.7)

where the index j indicates the modal number. Substituting Eq. (4.4.5) into Eq.
(4.3.23), the acoustic nodal force vector is expressed as

{R} = −[E0][Φ]T{P̃},ξ (4.4.8)

The amplitude of the modal nodal force vector {R̃} = {R̃(ξ, ω)} is defined as

{R̃} = −h{P̃},ξ or R̃j = −hP̃j,ξ (4.4.9)

Pre-multiplying Eq. (4.4.8) by [Φ]T and using Eqs. (4.4.2) and (4.4.9) yield

{R̃} = h[Φ]T{R} (4.4.10)

This equation transforms the amplitude of the acoustic nodal force vector to the
amplitude of the modal force vector. It can be used together with Eq. (4.4.9)
to specify the boundary condition for the modal equation (Eq. (4.4.6)) from the
prescribed amplitude of acoustic nodal force vector {R}.

Equation (4.4.6) can be solved analytically. The key equations given in Chapter
3 are summarized in the following. The modal dynamic stiffness coefficient S̃j(a0)

is defined as

R̃j = S̃j(a0)P̃j (4.4.11)

Its solution is equal to

S̃j(a0) =
√

λ2
j − a2

0 (4.4.12)

Note that the modal dynamic stiffness is independent of the horizontal coordinate ξ.
Performing the inverse Fourier transformation of P̃j determined from Eqs. (4.4.11)
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and (4.4.12) leads to

p̃j(ξ, t) =
c

h

∫ t

0

J0

(
λj

c(t − τ)

h

)
r̃j(ξ, τ)dτ (4.4.13)

where J0 is the zero order first kind Bessel function. Substituting Eq. (4.4.13) into
Eq. (4.4.5) and using Eq. (4.4.10) yield

{p(ξ, t)} = c[Φ]

∫ t

0

⌈
J0

(
λj

c(t − τ)

h

)⌋
[Φ]T{r(ξ, τ)}dτ (4.4.14)

When the time history of the nodal forces {r(ξ, t)} is prescribed at a vertical
boundary specified with a constant ξ, the nodal hydrodynamic pressure {p(ξ, t)}
can be computed by using Eq. (4.4.14). However, this equation is temporally global,
and the Bessel function decays very slowly at a rate of 1/

√
t. The computational

effort increases rapidly with the number of time steps.

4.5 Doubly asymptotic continued fraction solution

for modal dynamic stiffness

A temporally local open boundary condition is constructed in Chapter 3 for a single
mode of wave propagation. It is based on a doubly asymptotic solution of the modal
dynamic stiffness coefficient S̃j(a0). By eliminating R̃j and P̃j from Eqs. (4.4.6),
(4.4.9) and (4.4.11), an equation for the dynamic stiffness coefficient is derived

(S̃j(a0))
2 + a2

0 − λ2
j = 0 (4.5.1)

The solution of Eq. (4.5.1) is expressed as a doubly asymptotic continued fraction.
An order MH high-frequency continued fraction is constructed first

S̃j(a0) = (ia0)C̃∞,j −
λ2

j

(ia0)Ỹ
(1)
1,j − λ2

j

(ia0)Ỹ
(2)
1,j − λ2

j

. . . − λ2
j

(ia0)Ỹ
(MH )
1,j (a0)− λ2

j

Ỹ
(MH+1)
1,j

(a0)

(4.5.2)
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which is equivalent to

S̃j(a0) = (ia0)C̃∞,j − λ2
j(Ỹ

(1)
j (a0))

−1 (4.5.3a)

Ỹ
(i)
j (a0) = (ia0)Ỹ

(i)
1,j − λ2

j(Ỹ
(i+1)
j (a0))

−1 (i = 1, 2, . . . , MH) (4.5.3b)

where the constants C̃∞,j and Ỹ
(i)
1,j (i = 1, 2, . . . , MH) are determined by satisfying

Eq. (4.5.1) at the high-frequency limit (a0 → +∞). Substituting Eq. (4.5.3a) into
Eq. (4.5.1) results in an equation in terms of a power series of (ia0)

(ia0)
2(C̃∞,j − 1) + λ2

j(−1 − 2(ia0)C̃∞,j(Ỹ
(1)
j (a0))

−1 + λ2
j(Ỹ

(1)
j (a0))

−2) = 0 (4.5.4)

This equation is satisfied by setting, in descending order, the two terms to zero.
The damping coefficient C̃∞,j is obtained from the first term. To satisfy the radiation
condition, the positive solution is chosen

C̃∞,j = 1 (4.5.5)

The second term of Eq. (4.5.4) is an equation for the residual term Ỹ
(1)
j (a0) as C̃∞,j is

known. To derive a recursive formula for determining the constants of the continued
fraction, it is rewritten as the i = 1 case of

λ2
j − 2b

(i)
1,j(ia0)Ỹ

(i)
j (a0) − (Ỹ

(i)
j (a0))

2 = 0 (i = 1, 2, . . . , MH) (4.5.6)

with the constant

b
(1)
1,j = 1 (4.5.7)

Substituting Eq. (4.5.3b) into Eq. (4.5.6) leads to an equation in terms of a power
series of (ia0)

− (ia0)
2((Ỹ

(i)
1,j )2 + 2b

(i)
1,jỸ

(i)
1,j ) + λ2

j(1 + 2(ia0)(Ỹ
(i)
1,j + b

(1)
1,j)(Ỹ

(1)
j (a0))

−1

− λ2
j(Ỹ

(1)
j (a0))

−2) = 0 (4.5.8)

Being similar to the process from Eq. (4.5.4) to Eq. (4.5.8), the coefficients in the
continued fraction in Eq. (4.5.3b) are determined by solving Eq. (4.5.8) recursively

b̃
(i)
1,j = (−1)i+1 (i = 1, 2, . . . , MH) (4.5.9)

Ỹ
(i)
1,j = (−1)i2 (i = 1, 2, . . . , MH) (4.5.10)
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Using Eq. (4.5.5) and Eq. (4.5.10), the high-frequency continued fraction in Eq.
(4.5.3a) is expressed as

S̃j(a0) = (ia0) − λ2
j(Ỹ

(1)
j (a0))

−1 (4.5.11a)

Ỹ
(i)
j (a0) = (−1)i2(ia0) − λ2

j(Ỹ
(i+1)
j (a0))

−1 (i = 1, 2, . . . , MH) (4.5.11b)

It is shown in Chapter 3 that the high-frequency continued fraction does not con-
verge below the cut-off frequency. To determine a solution that is valid over the
whole frequency range, a low-frequency continued fraction solution is sought for the
residual term Ỹ

(MH+1)
j (a0). Denoting the residual term for mode j as

Ỹ
(i)
L,j(a0) = Ỹ

(MH+1)
j (a0) (4.5.12)

The i = MH + 1 case of Eq. (4.5.6) is rewritten as

λ2
j − 2bL,j(ia0)Ỹ

(i)
L,j(a0) − (Ỹ

(i)
L,j(a0))

2 = 0 (4.5.13)

with the constant

bL,j = b
(MH+1)
1,j = (−1)MH (4.5.14)

The continued fraction solution for Ỹ
(i)
L,j(a0) at the low-frequency limit is written as

ỸL,j(a0) = Ỹ
(0)
L0,j + (ia0)Ỹ

(0)
L1,j −

(ia0)
2

Ỹ
(1)
L0,j −

(ia0)
2

Ỹ
(2)
L0,j −

(ia0)
2

. . . − (ia0)
2

Ỹ
(ML)
L0,j

(4.5.15)

It is equivalent to

ỸL,j(a0) = Ỹ
(0)
L0,j + (ia0)Ỹ

(0)
L1,j − (ia0)

2(Ỹ
(1)
L,j (a0))

−1 (4.5.16a)

Ỹ
(i)
L,j(a0) = Ỹ

(i)
L0,j − (ia0)

2(Ỹ
(i+1)
L,j (a0))

−1 (i = 1, 2, . . . , ML) (4.5.16b)

The coefficients Ỹ
(0)
L0,j and Ỹ

(0)
L1,j in Eq. (4.5.16a) and Ỹ

(i)
L0,j (i = 1, 2, . . . , ML) in

Eq. (4.5.16b) are determined by satisfying Eq. (4.5.13) at the low frequency limit
(a0 → 0). Substituting Eq. (4.5.16a) into Eq. (4.5.13) leads to an equation in terms
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of a power series of (ia0)(
λ2

j − (Ỹ
(0)
L0,j)

2
)
− (ia0)(2b̃L,jỸ

(0)
L0,j + 2Ỹ

(0)
L0,jỸ

(0)
L1,j) + (ia0)

2
(
−2b̃L,jỸ

(0)
L1,j − (Ỹ

(0)
L1,j)

2

+ 2 (Ỹ
(0)
L0,j + (ia0)(Ỹ

(0)
L1,j + b̃L,j))(Ỹ

(1)
L,j (a0))

−1 − (ia0)
2(Ỹ

(1)
L,j (a0))

−2
)

= 0 (4.5.17)

As the low-frequency solution is being sought, Eq. (4.5.17) is satisfied by setting
the coefficients of the power series to zero in ascending order. The constant term
leads to two solutions for Ỹ

(0)
L0,j, the one leads to the correct modal static dynamic

stiffness Sj(a0 = 0) = λj should be chosen. Inspecting Eq. (4.5.2) with Ỹ
(MH+1)
j (0) =

ỸL,j(0) = Ỹ
(0)
L0,j, the solution is

Ỹ
(0)
L0,j = (−1)MH+1λj (4.5.18)

For the coefficient of (ia0) term in Eq. (4.5.17), using Eq. (4.5.14), the solution
of Ỹ

(0)
L0,j is

Ỹ
(0)
L1,j = (−1)MH+1 (4.5.19)

The equation for the residual Ỹ
(1)
L,j (a0) is expressed as the i = 1 case of

(ia0)
2 − 2b̃

(i)
L,jỸ

(i)
L,j(a0) − (Ỹ

(i)
L,j(a0))

2 = 0 (i = 1, 2, . . . , ML) (4.5.20)

with the constant

b̃
(1)
L,j = −b̃L,jλj = (−1)MH+1λj (4.5.21)

After substituting Eq. (4.5.16b) into Eq. (4.5.20), following the procedure for
constructing the continued fraction solution at high frequency, the solutions of
Ỹ

(i)
L0,j (i = 1, 2, . . . , ML) are recursively obtained as

Ỹ
(i)
L0,j = (−1)MH+i+12λj (i = 1, 2, . . . , ML) (4.5.22)

For an order ML low-frequency solution, the residual (ia0)
2(Ỹ

(MH+1)
L,j (a0))

−1 is ne-
glected. Using Eqs. (4.5.18), (4.5.19) and Eq. (4.5.22), the low-frequency continued
fraction solution in Eq. (4.5.16) is equal to

ỸL,j(a0) = (−1)MH+1λj + (−1)MH+1(ia0) − (ia0)
2(Ỹ

(1)
L,j (a0))

−1 (4.5.23a)

Ỹ
(i)
L,j(a0) = (−1)MH+i+12λj − (ia0)

2(Ỹ
(i+1)
L,j (a0))

−1 (i = 1, 2, . . . , ML) (4.5.23b)
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Combining the high-frequency solution (Eq. (4.5.2)) and the low-frequency solution
(Eq. (4.5.15)) by using Eq. (4.5.12), yields the doubly asymptotic continued fraction
solution. For example, the order MH = ML = 2 doubly asymptotic continued
fraction solution for mode j is expressed as

S̃j(a0) = (ia0) −
λ2

j

−2(ia0) −
λ2

j

2(ia0) −
λ2

j

−λj − (ia0) − (ia0)2

2λj− (ia0)2

−2λj

(4.5.24)

4.6 Doubly asymptotic open boundary condition

Following the procedure developed for modal space in Chapter 3, the acoustic force-
pressure relationship in the time domain is formulated by using the continued frac-
tion solution of the dynamic stiffness and introducing auxiliary variables. A system
of first-order ordinary differential equations with symmetric coefficient matrices is
obtained, which represents a temporally local open boundary condition. Substitut-
ing the first term of the continued fraction solution (Eq. (4.5.11a)) into Eq. (4.4.11),
the amplitude of modal force is written as

R̃j = (ia0)P̃j − λjP̃
(1)
j (4.6.1)

where the auxiliary variable P̃
(1)
j is defined in

λjP̃j = Ỹ
(1)
j (a0)P̃

(1)
j (4.6.2)

Using Eqs. (4.4.10) and (4.6.1), the amplitude of nodal force vector is expressed
as

h{R} = (ia0)[Φ]−T{P̃} − [Φ]−T �λ{P̃ (1)} (4.6.3)

Substituting {P̃} = [Φ]−1{P} (Eq. (4.4.5)) and [E0] = [Φ]−T [Φ]−1 (Eq. (4.4.2)) into
Eq. (4.6.3) leads to

h{R} = (ia0)[E
0]{P} − [Φ]−T �λ{P̃ (1)} (4.6.4)

Substituting Eq. (4.5.11b) into Eq. (4.6.2) leads to

λjP̃j = −2(ia0)P̃
(1)
j − λjP̃

(2)
j (4.6.5)
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where P̃
(2)
j is defined as the i = 1 case in

λjP̃
(i)
j = Ỹ

(i+1)
j (a0)P̃

(i+1)
j (4.6.6)

Substituting {P̃} = [Φ]−1{P} (Eq. (4.4.5)) into Eq. (4.6.5) formulated for all the
modes yields

�λ[Φ]−1{P} = −2(ia0){P̃ (1)} − �λ{P̃ (2)} (4.6.7)

Substituting the remaining terms of the continued fraction solution in Eq. (4.5.11b)
into Eq. (4.6.6) results in

λjP̃
(i−1)
j = (−1)i2(ia0)P̃

(i)
j − λjP̃

(i+1)
j (i = 2, 3, . . . , MH) (4.6.8)

The residual term of an order MH high-frequency continued fraction solution
given by Eq. (4.6.6) at i = MH is the initial term of the low-frequency continued
fraction (Eq. (4.5.23a)). It is expressed as

λjP̃
(MH)
j = Ỹ

(MH+1)
j (a0)P̃

(MH+1)
j = ỸL,j(a0)P̃

(0)
L,j (4.6.9)

with the auxiliary variable P̃
(0)
L,j = P̃

(MH+1)
j . Substituting Eq. (4.5.23a) into Eq.

(4.6.9) leads to

λjP̃
(MH)
j = (−1)MH+1λjP̃

(0)
L,j + (−1)MH+1(ia0)P̃

(0)
L,j − (ia0)P̃

(1)
L,j (4.6.10)

where the auxiliary variable P̃
(1)
L,j is defined in the i = 1 case of

(ia0)P̃
(i−1)
L,j = Ỹ

(i)
L,j(a0)P̃

(i)
L,j (4.6.11)

Substituting Eq. (4.5.23b) into Eq. (4.6.11) leads to

(ia0)P̃
(i−1)
L,j = (−1)MH+i+12λjP̃

(i)
L,j − (ia0)P̃

(i+1)
L,j (i = 1, 2, . . . , ML) (4.6.12)

For an order ML low-frequency continued fraction solution, P̃
(ML+1)
L,j = 0 ap-

plies. Equations (4.6.4), (4.6.7), (4.6.8), (4.6.10) and (4.6.12) constitute a system
of linear equations for the amplitude of nodal force vector {R}, the amplitude of
nodal pressure vector {P}, and auxiliary variables {P̃ (i)} (i = 1, 2, . . . , MH) and
{P̃ (i)

L } (i = 0, 1, . . . , ML). This system of equations describes an acoustic nodal
force-pressure relationship equivalent to the doubly asymptotic continued fraction
solution of the modal dynamic stiffness. This formulation is linear in (ia0) and can
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be directly transformed to the time domain. The inverse Fourier transforms of Eqs.
(4.6.4), (4.6.7), (4.6.8), (4.6.10) and (4.6.12) divided by h are written as

{r} =
1

c
[E0]{ṗ} − 1

h
[Φ]−T �λ{p̃(1)} (4.6.13)

1

h
�λ[Φ]−1{p} = −2

c
{ ˙̃p(1)} − 1

h
�λ{p̃(2)} (4.6.14)

1

h
λj p̃

(i−1)
j = (−1)i 2

c
˙̃p
(i)
j − 1

h
λj p̃

(i+1)
j (i = 2, 3, . . . , MH) (4.6.15)

1

h
λj p̃

(MH)
j = (−1)MH+1 1

h
λj p̃

(0)
L,j + (−1)MH+1 1

c
˙̃p
(0)
L,j −

1

c
˙̃p
(1)
L,j (4.6.16)

1

c
˙̃p
(i−1)
L,j = (−1)MH+i+1 2

h
λj p̃

(i)
L,j −

1

c
˙̃p
(i+1)
L,j (i = 1, 2, . . . , ML) (4.6.17)

Assembling Eq. (4.6.13) to Eq. (4.6.17) leads to a system of first order ordinary
differential equations with banded and symmetric coefficient matrices. This system
of ordinary differential equations relating the interaction load {r} and hydrodynamic
pressure {p} in the time domain is a temporally local high-order open boundary con-
dition for the semi-infinite reservoir with a constant depth. It is directly established
on the nodes of a vertical boundary. This boundary condition can be coupled seam-
lessly with finite elements. However, it introduces auxiliary variables as additional
degrees of freedom. The coupling with commercial software packages is not feasi-
ble for a user without access to the source codes. To overcome this difficulty, the
following sequential staggered implicit-implicit partition algorithm is adopted.

4.7 Numerical implementation in time domain

Substituting Eq. (4.6.13) into Eq. (4.2.7), the equation of motion of the dam-
reservoir system considering the interaction between the near-field water and the
semi-infinite reservoir is expressed as

⎡⎢⎣ [Ms] 0 0

−[Qfs] [Mff ] [Mfb]

0 [Mbf ] [Mbb]

⎤⎥⎦
⎧⎪⎨⎪⎩

{üs}
{p̈f}
{p̈b}

⎫⎪⎬⎪⎭+
1

c

⎡⎢⎣ 0 0 0

0 0 0

0 0 [E0]

⎤⎥⎦
⎧⎪⎨⎪⎩

{u̇s}
{ṗf}
{ṗb}

⎫⎪⎬⎪⎭
+

⎡⎢⎣ [Ks] [Qfs] 0

0 [Kff ] [Kfb]

0 [Kbf ] [Kbb]

⎤⎥⎦
⎧⎪⎨⎪⎩

{us}
{pf}
{pb}

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
{fs}
{ff}

[Φ]−T �λ{p̃(1)}/h

⎫⎪⎬⎪⎭ (4.7.1)

Note that an additional damping term appears in Eq. (4.7.1). Comparing the ex-
pression of [E0] in Eq. (4.3.19a) with the Sommerfeld radiation condition (see also
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Eq. (4.2.6))

∂p

∂x
= − ṗ

c
i.e. üx = −1

ρ

∂p

∂x
=

ṗ

ρc
(4.7.2)

it is found that the damping term is equivalent to the Sommerfeld radiation
boundary, which is provided in ABAQUS. This term is, therefore, evaluated and
assembled by the internal code of ABAQUS. The coupling term [Φ]−T �λ{p̃(1)}/h
on the right-hand side of Eq. (4.7.1) represents the contribution of the high-order
terms of the doubly asymptotic boundary. It can be regarded as an external load
applied on the truncated boundary. When this term is set to zero, the high-order
boundary condition degenerates to the Sommerfeld radiation boundary. As shown
in Eq. (4.6.14), its value depends on the response history of the hydrodynamic
pressure {p}. For efficiency consideration in the numerical implementation, the
hydrodynamic pressure {p} is transformed to the modal hydrodynamic pressure
(Eq. (4.4.5))

{p̃} = [Φ]−1{p} (4.7.3)

Using Eq. (4.7.3) and multiplying Eq. (4.6.14) by h/λj leads to

p̃j = − 2h

cλj

˙̃p
(1)
j − p̃

(2)
j (4.7.4)

Equations (4.7.4), (4.6.15), (4.6.16) and (4.6.17) are decoupled for individual modes.
For each mode, they are assembled as a system of ordinary differential equations for
the auxiliary variables

[KA]{zA,j(t)} +
h

cλj

[CA]{ż(t)} = {fA,j(t)} (4.7.5)

where the vector {zA,j(t)} consists of the auxiliary variables of mode j (The semi-
colon “;” stands for the vertical concatenation of vectors)

{zA,j(t)} = {p̃(i)
j ; . . . ; p̃

(MH)
j , p̃

(0)
.L,j, p̃

(1)
.L,j, . . . , p̃

(ML)
.L,j } (4.7.6)

The only nonzero entry on the right-hand side is the modal hydrodynamic pres-
sure p̃j determined from Eq. (4.7.3)

{fA,j(t)} = {−p̃
(i)
j ; . . . ; 0, 0, 0, . . . , 0} (4.7.7)
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The coefficient matrices are expressed as

[KA] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

−1
. . . . . .
. . . 0 −1

−1 (−1)MH 0

0 (−1)MH+12
. . .

. . . . . . 0

0 (−1)MH+ML2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7.8a)

[CA] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)02 0

0
. . . . . .
. . . (−1)MH−12 0

0 (−1)MH −1

−1 0
. . . . . . 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7.8b)

To evaluate the stability of Eq. (4.7.5), the generalized eigenvalue problem

[KA]{φA} = λA[CA]{φA} (4.7.9)

is analyzed for various orders of the doubly asymptotic open boundary. The mini-
mum value of the real parts of all the eigenvalues, denoted as MIN(REAL(λA)), is
plotted in Fig. 4.7.1 up to the order MH = ML = 100. It is observed that the real
parts of all the eigenvalues λA are positive. As λjc/h is always positive, Eq. (4.7.5)
is asymptotic stable.
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Figure 4.7.1: Minimum real part of eigenvalues of coefficient matrices (Eq. (4.7.9))
vs. order of open boundary MH = ML

Equation (4.7.1) for the near field and Eq. (4.7.5) for the far field are coupled by
the auxiliary variables {p̃(1)}. These two sets of equations are solved by a sequential
staggered implicit-implicit partitioned procedure proposed by Park (1980) and Park
and Felippa (1980). Equation (4.7.1) is integrated implicitly by using the trapezoidal
rule to evaluate the hydrodynamic pressure. The value of the auxiliary variables
{p̃(1)} at time station tn+1 is obtained from the last-solution extrapolation predictor
(Park, 1980; Park and Felippa, 1980)

{p̃(1)}p
n+1 = {p̃(1)}n (4.7.10)

The auxiliary variables {p̃(1)} are obtained by integrating Eq. (4.7.5) for prescribed
hydrodynamic pressure {p} (Eqs. (4.7.3) and (4.7.7)).

Based on the restart function of ABAQUS, a two-way data-exchange sequen-
tial coupling scheme is proposed to solve Eqs. (4.7.1) and (4.7.5) alternately. The
algorithm proceeds as follows:

1. Initialize variables {u}0 and {p}0 in Eq. (4.7.1) and {zA,j} = 0 for each mode
in Eq. (4.7.5);

2. Extracting {p̃(1)}n from {zA,j}n of each mode (4.7.6) and assign to {p̃(1)}p
n+1

(the last-solution extrapolation predictor (4.7.10));
3. Form the right-hand term of Eq. (4.7.1), compute {u}n+1 and {p}n+1 in

ABAQUS by using an implicit method;
4. Calculate the modal hydrodynamic pressure {p̃}n+1 by using Eq. (4.7.3) and

form the right-hand term of Eq. (4.7.5);
5. Compute {zA,j}n+1 in home code for each mode by using implicit method;
6. Increment n to n + 1 and go to Step 2.
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From the point of view of wave propagation, this high-order doubly asymptotic
open boundary is spatially global as all the degrees of freedom are coupled via the
eigenvectors [Φ] as shown in Eq. (4.4.5). In its numerical implementation shown
in Eq. (4.7.1), the Sommerfeld boundary term expressed as the damping matrix
is spatially local. The term [Φ]−T �λ{p̃(1)}/h is obtained by solving a system of
decoupled equations (Eq. (4.7.5)) whose number of equations equal to the number of
degrees of freedom on boundary. Therefore, from the point of view of computational
cost, this open boundary condition is spatially local.

4.8 Numerical examples

Two numerical examples are analyzed to evaluate the accuracy and efficiency of the
present doubly asymptotic open boundary condition. The first one is a rigid dam
with a vertical upstream face and a semi-infinite reservoir with a constant depth.
The doubly asymptotic open boundary is applied directly on the upstream face of
the dam. The computational efficiency of the present technique is evaluated by
measuring the computer time. The accuracy of the results is assessed by comparing
with the analytical solution obtained by Chopra (1967). The second one is a flexible
dam with an irregular near-filed of the reservoir. The open boundary is employed
to represent the regular far field of the reservoir. The results are compared with
extended mesh solutions. The time integration of Eqs. (4.7.1) and (4.7.5) are both
performed by using the implicit Newmark’s method with γ = 0.5 and β = 0.25 i.e.
trapezoidal integration (see Section A.2 in Appendix A).

4.8.1 Rigid dam

A rigid dam with a vertical upstream face is shown in Fig. 4.8.1. The constant depth
of the reservoir extending to infinity is h = 180 m. The pressure wave velocity is c =

1, 437.8 m/s and the density is ρ = 1, 000 kg/m3. The high-order doubly asymptotic
open boundary is directly applied on the interface between rigid dam and reservoir.
Twelve 3-node quadratic line elements are used to discretize the interface and the
nodal interval is 7.5 m. The coupling with ABAQUS is not required. Equation
(4.6.13) replaces Eq. (4.7.3) in the sequential staggered implicit-implicit partitioned
procedure with the last-solution extrapolation predictor (Eq. (4.7.10)).
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Figure 4.8.1: Rigid dam with semi-infinite reservoir of constant depth

The horizontal acceleration a(t) of the rigid dam is prescribed as a Ricker wavelet
(see Eqs. (A.1.1) and (A.1.2) in Appendix A). The first cut-off frequency of the reser-
voir is ω = πc/(2h) which corresponds to a dimensionless frequency a0 = ωh/c =

π/2. The parameters of the Ricker wavelet are chosen as t̄s = tsc/h, t̄0 = t0c/h

and AR = 1. Its dominant frequency is equal to the first cut-off frequency of the
reservoir. The time history and Fourier transform of the Ricker wavelet are shown in
Fig. 4.8.2(a) and Fig. 4.8.2(b), respectively. The time step Δt = 0.001h/c is chosen.
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Figure 4.8.2: Prescribed acceleration as Ricker wavelet: (a) time history and (b)
Fourier transform

The singly asymptotic boundary condition constructed by including only the
high-frequency expansion is investigated. It is demonstrated in Chapter 3 that this
boundary condition is closely related to several high-order transmitting boundaries.
When the excitation frequency is lower than the cut-off frequency of a mode, “fic-
titious reflections” are observed in a long-time analysis of the modal response. For
the case of the rigid dam, the hydrodynamic pressure responses at the dam heel
are computed with the singly asymptotic boundary condition of orders MH = 11,
MH = 21 and MH = 99. The results are plotted in Fig. 4.8.3(a). The analytical so-
lution Chopra (1967) is shown for comparison. The responses are accurate at early
time, but “fictitious reflections” occur at late time. Although the arrival time of
the “fictitious reflections” increases with the order of boundary condition, the rate
of increase is slow. It is until the order is increased to MH = 99 that a reason-
ably accurate result is obtained for a duration of t̄ = tc/h = 80. Therefore, singly
asymptotic boundaries are not suitable for long-time computation of dam-reservoir
interaction.
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Figure 4.8.3: Hydrodynamic pressure at dam heel under Ricker-wavelet acceleration:
(a) singly asymptotic open boundary and (b) doubly asymptotic open
boundary

The doubly asymptotic boundary condition leads to a significant improvement
in accuracy at the same computational cost. The singly asymptotic boundary condi-
tions of orders MH = 11 and MH = 21 have 12 terms and 22 terms, respectively, in
the continued fraction solution of dynamic stiffness. The orders of the doubly asymp-
totic boundary conditions having the same number of terms are MH = ML = 5 and
MH = ML = 10, respectively. The results obtained with them are plotted in Fig.
4.8.3(b). It is observed that “fictitious reflections” do not occur as expected from
the investigation on a single mode (Chapter 3). By comparing Fig. 4.8.3(b) with
Fig. 4.8.3(a), it can be found that the doubly asymptotic boundary is much more
accurate than the singly asymptotic boundary with the same number of terms. The
MH = ML = 10 doubly asymptotic boundary condition is even more accurate than
MH = 99 the singly asymptotic boundary condition.

The computer time taken by the present high-order doubly asymptotic boundary
is recorded on a laptop with a 2.53 GHz dual-core CPU. For an analysis of 80,000
time steps, the computer time are listed in Table 4.8.1 for open boundaries of orders
MH = ML = 5, MH = ML = 10, and MH = ML = 20. It is observed that the
computer time increases linearly with the order of the open boundary. The increase
in computer time with the number of time steps is also investigated. Using the order
MH = ML = 10 boundary condition, the analyses are performed for durations of
dimensionless time t̄ = tc/h = 20, 40, 60 and 80. The computer time is shown in
Table 4.8.2. As expected for this temporally local open boundary, the computer
time increases linearly with the number of time steps.
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Table 4.8.1: Computer time for doubly asymptotic open boundaries of various orders

Order (MH = ML) 5 10 15 20
CPU time (sec.) 18.99 27.80 36.17 44.75

Table 4.8.2: Computer time for doubly asymptotic open boundaries with various
time durations of analysis

Time durations (t̄ = tc/h) 20 40 60 80
CPU time (sec.) 6.92 13.78 20.75 27.80

A triangular impulse of acceleration that has different frequency characteristics
from the Ricker wavelet is addressed. The triangular impulse a(t) with a duration
3h/c and a peak value AT is plotted in Fig. 4.8.4(a). Its Fourier transform A(ω) is
illustrated in Fig. 4.8.4(b). The time step is chosen as Δt = 0.001h/c.
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Figure 4.8.4: Triangular impulse of acceleration: (a) time history and (b) Fourier
transform
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The hydrodynamic pressure at the heel of dam is plotted in Fig. 4.8.5. The result
obtained from the order MH = ML = 10 doubly asymptotic boundary is in excellent
agreement with the analytical solution.
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Figure 4.8.5: Hydrodynamic pressure at dam heel under triangular-impulse acceler-
ation

To investigate the performance of the presented doubly asymptotic transmitting
boundary under earthquake load, the El-Centro earthquake ground motions in the
direction of North-South is applied (see Fig. 4.8.6). The size of time step is selected
as Δt = 0.0001 s. The order of the doubly asymptotic boundary of order is MH =

ML = 10.
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Figure 4.8.6: Time history of El-Centro earthquake

The hydrodynamic pressure response at the heel of dam is shown in Fig. 4.8.7.
Again, no fictitious reflections occur. Excellent agreement with the analytical solu-
tion is achieved.
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Figure 4.8.7: Hydrodynamic pressure at dam heel under acceleration of El-Centro
earthquake

4.8.2 Flexible dam

A typical flexible gravity dam-reservoir system with an irregular near-field is shown
in Fig. 4.8.8(a). The dam body has a modulus of elasticity E = 35 GPa, Poisson’s
ratio ν = 0.2 and mass density ρ = 2, 400 kg/m3. The physical property of water
is the same as that in the example of the rigid dam. The finite element mesh is
shown in Fig. 4.8.8(b). The system is divided into three parts: the dam body, the
near-field reservoir and the far-field reservoir with a constant depth. The dam body
is discretized with 52 eight-node solid elements, and the near-field reservoir with
156 eight-node fluid elements. The solid elements and fluid elements are coupled on
the upstream dam face by 13 three-node interface elements. The far-field reservoir
is modeled by 13 three-node quadratic line elements. The elements share the same
nodes and are compatible on the truncated boundary with those of the near-field
fluid elements. The total number of nodes in the whole model is 653.
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Figure 4.8.8: Gravity dam-reservoir system with irregular near field: (a) geometry
and (b) mesh

The triangular impulse (Fig. 4.8.4) is imposed as the horizontal acceleration at
the base of the dam. The time step is Δt = 0.01h/c. During one time step, the
pressure waves travel about one quarter of the distance between two adjacent nodes.
8,000 time steps are computed. The responses of the hydrodynamic pressure at the
heel of dam and the horizontal displacement at the crest of dam are shown in Fig.
4.8.9 and Fig. 4.8.10, respectively. To verify the results, an extended mesh covering
a far-field reservoir region of 7,200 m is analyzed. This region is discretized with
5,733 eight-node elements of uniform size (not shown). The total number of nodes is
18,067. The size of extended mesh is sufficiently large to avoid the pollution of the
dam response by the waves reflected on the truncated boundary for a time duration
of t = 80h/c ≈ 10 s. Excellent agreement between the present solutions and the
extended mesh solutions is observed.
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Figure 4.8.9: Hydrodynamic pressure at dam heel under triangular-impulse acceler-
ation
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Figure 4.8.10: Horizontal displacement at dam crest under triangular-impulse accel-
eration

The response of the dam-reservoir system subjected to the El-Centro earthquake
ground motion (Fig. 4.8.6) is analyzed. The time step is chosen as 0.002 s during
which pressure wave travels about one third of the distance between two adjacent
nodes. The responses of the first 20 s are plotted in Fig. 4.8.11 for the hydrodynamic
pressure at the heel of dam and in Fig. 4.8.12 for the horizontal displacement at the
crest of dam. The results agree very well with the extended mesh solutions during
the first 10 s (before the waves reflected on the truncated boundary arrive at the
dam).
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Figure 4.8.11: Hydrodynamic pressure at dam heel under El-Centro ground motion
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Figure 4.8.12: Horizontal displacement at dam crest under El-Centro ground motion

4.9 Conclusions

A high-order doubly asymptotic open boundary condition is developed for evaluating
the hydrodynamic pressure in a semi-infinite reservoir with a constant depth. It is
established on a vertical truncated boundary by using the scaled boundary finite
element method. The same isoparametric finite elements are used in modeling the
near field and the far field of semi-infinite reservoir. The open boundary condition
is split into a Sommerfeld radiation boundary and external nodal load. Making
use of the restart function in the general-purpose finite element package ABAQUS,
the response of the gravity dam-reservoir system is solved by a sequential staggered
implicit-implicit partitioned procedure. From the point of view of computational
cost, this boundary condition is local in both space and time. Numerical examples
demonstrate the excellent performance of this present technique for not only early-
time but also long-time computations. The open boundary condition is stable and
converges rapidly as the order increases.
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Chapter 5

Improved Doubly Asymptotic Open
Boundary for Scalar Wave
Propagation in Full-Plane with
Circular Cavity

Abstract

A high-order doubly asymptotic open boundary is improved specifically for scalar
wave propagation in a homogeneous full-plane with a circular cavity by extending
the scaled boundary finite element method. With the technique of continued frac-
tion, the doubly asymptotic continued fraction solution for modal dynamic stiffness
coefficients is derived in the frequency domain. The additional factor coefficients
are introduced to the continued fraction solution. The numerical stability of the
solution is improved and the singularity problem is avoided. The coefficients of the
solution are determined recursively by satisfying the dynamic stiffness equation at
both high- and low-frequency limits. By introducing auxiliary variables and the dou-
bly asymptotic continued fraction solution to the force-displacement relationship in
the frequency domain, the high-order doubly asymptotic open boundary condition
is obtained. It is equivalent to a system of first-order ordinary differential equations
in the time domain which is similar to the equation of motion in structural dynam-
ics to which the standard time-step schemes are directly applicable. No parameters
other than the orders of continued fraction are selected by the user.
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5.1 Introduction

Numerical modeling of an unbounded domain is a difficult task since the boundary
condition at infinity must be satisfied. Due to the fact that the condition of vanishing
displacement amplitude at infinity is insufficient, a radiation condition has to be
applied to guarantee the uniqueness of the solution (Wolf and Song, 1996). The
radiation condition of scalar wave propagation in an unbounded domain was first
introduced to the frequency domain by Sommerfeld in 1949 (Sommerfeld, 1949) as
expressed in Eq. (5.1.1),

lim
r→∞

r
(s−1)

2 (u(ω),r +iku(ω)) = 0 (5.1.1)

where u(ω) is the displacement amplitude, k wave number, r the radial coordinate,
s the spatial dimension, and ω the excitation frequency.

The finite element method (FEM) is the most popular numerical method in
analysis of engineering structures. When it is applied to the simulation of wave
propagation in an unbounded domain, only a finite part of the unbounded domain
(computational domain) can be discretized with finite elements due to the limita-
tion of computer resources. To prevent waves from being reflected at the exterior
boundary of the finite element mesh back to the computational domain, it is usu-
ally necessary to apply a transmitting or open boundary condition at the exterior
boundary. Various methods aiming to construct accurate and efficient open bound-
aries have been proposed (Wolf and Song, 1996; Givoli, 1992a, 1991; Tsynkov, 1998;
Givoli, 2004). Most of the methods can be classified as either rigorous methods or
approximate methods.

Rigorous methods attempt to enforce a boundary condition representing the
dynamic property of the unbounded domain to ensure that no energy is radiated
from infinity towards the excitation source. The well known rigorous methods are,
for example, the boundary element method (BEM) and the scaled boundary finite
element method (SBFEM). The BEM arises from the potential problems, having
a long history of development as documented in papers (Beskos, 1987, 1997) and
books (Dominguez, 1993; Hall and Oliveto, 2003). This approach is suited to the
modeling of unbounded domains since it can automatically satisfy the radiation
condition by using a fundamental solution (Green’s function). Moreover, only the
boundary representing the unbounded domain is discretized, leading to a reduction
of the spatial dimension by one. However, the computational cost of a transient
boundary element analysis increases rapidly with the number of time steps due to
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the existence of convolution integrals. When the unbounded domain is anisotropic,
the evaluation of the fundamental solution become much more complicated.

The SBFEM, a novel semi-analytical approach based on the finite element for-
mulation, is well suited for modeling of unbounded domains (Wolf and Song, 1996;
Song and Wolf, 1997; Wolf and Song, 2000; Wolf, 2003). It combines some of the
advantages of the FEM and the BEM. Only the boundary is discretized. No funda-
mental solution is required. The radiation condition is satisfied rigorously.

Rigorous methods are non-local in space and time, in other words, spatially
and temporally global. The responses at a specified node and time is evaluated by
considering the responses of all nodes on the boundary at all previous time stations.
This results in a large computational effort that is inappropriate for modeling large-
scale problems.

Approximate methods aim to significantly reduce the computational cost of rig-
orous methods and provide sufficiently accurate results at the same time. These
methods are generally (spatially and temporally) local. In a local procedure, the re-
sponse at a specified node and time depends on only the responses of a few adjacent
nodes at a few previous time stations.

Approximate methods are often formulated as artificial boundary conditions rep-
resenting unbounded domains. Such boundary conditions are normally enforced
on the truncated boundary of the computational domain to absorb energy carried
by propagating waves. These artificial boundary conditions are known by differ-
ent names e.g. transmitting boundary condition, absorbing boundary condition,
open boundary condition etc. Usually, an artificial boundary must be placed far
enough from the excitation source to prevent spurious reflection. The first artificial
boundary is the viscous boundary, also known as the Lysmer-Kuhlemeyer boundary
introduced in 1969 (Lysmer and Kuhlemeyer, 1969). This artificial boundary is a
low-order absorbing boundary since the order of derivatives in the formulation is
one.

Several years later, various high-order absorbing boundary conditions (high-order
ABCs) were developed in order to improve the accuracy. The well-known high-order
ABCs include the Engquist-Majda ABC (Engquist and Majda, 1979), the Bayliss-
Gunzburger-Turkel ABC (Bayliss et al., 1982) and the Higdon ABC (Higdon, 1986).
In theory, their orders can increase up to any desired values and their accuracy can
be improved by increasing the order. In fact, when the orders are typically higher
than two, the algorithms become unstable. The implementation in the time-domain
analysis is cumbersome due to the high-order derivatives.
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In 1993, Collino first developed a high-order ABC by replacing the high-order
derivatives with auxiliary variables. This facilitates the implementation of the ab-
sorbing boundary in numerical methods. Several local high-order ABCs e.g. the
Hagstrom-Warburton ABC (Hagstrom and Warburton, 2004), the Hagstrom-Mar-
Or-Givoli ABC (Hagstrom et al., 2008) and the Bécache-Givoli-Hagstrom ABC (Bé-
cache et al., 2010) follow the method of Collino. Recently, a new approach to con-
structing a temporally local transmitting boundary of arbitrarily high order has been
proposed by Bazyar and Song (2008). The transmitting boundary is applicable to
unbounded domains with arbitrary geometry. In addition, anisotropic unbounded
media can be analyzed without additional computation cost. The boundary condi-
tion enforced on the transmitting boundary is expressed as a system of first-order
ordinary differential equations in time. This allows well-established time-stepping
schemes in structural dynamics to be applicable to the time domain analysis.

Most of the high-order absorbing boundaries are only singly asymptotic at the
high-frequency limit. Thus they are appropriate for radiative fields i.e. all of the
field energy virtually propagates out to infinity. In the case of a circular cavity
embedded in a full-plane, the rate of convergence of the high-order singly asymptotic
open boundary is slow as demonstrated in Chapter 3. From an application point
of view, it is highly desirable to develop a temporally local open boundary that is
capable of accurately mimicking an unbounded domain over the entire frequency
range (i.e. from zero to infinity). A well-known approach is the doubly-asymptotic
approximation (DAA) which can be regarded as an ABC. The DAA has a long time
history of development as reported by Geers (1978), Underwood and Geers (1981),
Geers and Zhang (1994), Geers and Lewis (1997) and Geers and Toothaker (2000).
The formulation of the DAA is temporally local but spatially global. The dynamic
stiffness obtained from the DAA is accurate not only at the high-frequency limit but
also at statics. The highest order of the DAA as reported in the literature is three
(Geers and Toothaker, 2000).

The high-order doubly asymptotic open boundary constructed in Chapter 3
was developed specifically for the modal equations of scalar waves. It is doubly
asymptotic at both high- and low-frequency limits. The formulation is expressed
as a system of first-order ordinary differential equations in the time domain. Well-
established time-stepping schemes in structural dynamics are directly applicable.
The high-order open boundary is temporally local. The amount of computer time
and storage are the same as those required by the high-order singly asymptotic open
boundary.

The objective of this chapter is to improve the high-order doubly asymptotic
open boundary for a circular cavity embedded in a full-plane in Chapter 3. Factor
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coefficients are introduced in the derivation of the doubly asymptotic continued
fraction solution to improve the numerical stability of the solution procedure. As
a result, the denominators of the continued fraction coefficients turn into only sign
functions which can avoid the singularity and ill-conditioned problems. This chapter
is organized as follows: in Section 5.2, the governing differential equation of a two-
dimensional scalar wave for a full-plane with a circular cavity is presented. In
Section 5.3, the scaled boundary finite element equation in displacement is derived
in the frequency domain. In Section 5.4, the equations of modal dynamic stiffness
coefficients are formulated. In Section 5.5, the derivation of the doubly asymptotic
continued fraction solution for modal dynamic stiffness coefficients is presented. In
Section 5.6, the high-order doubly asymptotic boundary condition of the full-plane
with a circular cavity is constructed in both frequency and time domains. In Section
5.7, the numerical examples are demonstrated in the frequency and time domains.
In Section 5.8, conclusions are presented.

5.2 Governing differential equation of scalar waves

A circular cavity of radius r0 embedded in a full-plane is shown in Fig. 5.2.1(a).
The full-plane is homogeneous and the material constants are the shear modulus
G and the mass density ρ. The out-of-plane or anti-plane motion u = u(x̂, ŷ, t) of
the full-plane in the Cartesian coordinates (x̂, ŷ) is considered. For the boundary
condition, it is assumed that the circular boundary Γ located at r = r0 is subjected
to time-dependent out-of-plane shear stresses.
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Figure 5.2.1: Full-plane with circular cavity: (a) Cartesian and polar coordinates
and (b) typical element and scaled boundary coordinates

Introducing the differential operator denoting the vector of spatial derivatives in
the Cartesian coordinates,

{L} = [ ∂
∂x̂

∂
∂ŷ

]T (5.2.1)

The out-of-plane strains {γ} = [ γẑx̂ γẑŷ ]T are expressed as

{γ} = {L}u (5.2.2)

The out-of-plane shear stresses {τ} = [ τẑx̂ τẑŷ ]T are equal to

{τ} = G{γ} (5.2.3)

where τẑx̂ and τẑŷ are out-of-plane shear stresses, and γẑx̂ and γẑŷ are the corre-
sponding shear strains. They are expressed as

γẑx̂ = u,x̂ (5.2.4a)

γẑŷ = u,ŷ (5.2.4b)

The governing differential equation of motion is expressed as

{L}T{τ} − ρü = 0 (5.2.5)

where ü is the acceleration in the out-of-plane direction. Substituting Eq. (5.2.3)
into Eq. (5.2.5) and using Eqs. (5.2.1) and (5.2.2) lead to the scalar wave equation
formulated in two-dimensional Cartesian coordinates,

∇2u =
1

c2
s

ü (5.2.6)
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where ∇2 is the Laplace operator,

∇2 =
∂2

∂x̂2
+

∂2

∂ŷ2
(5.2.7)

and cs the speed of shear wave,

cs =

√
G

ρ
(5.2.8)

5.3 Scaled boundary finite element method for full-

plane with circular cavity

The scaled boundary finite element method (SBFEM) is a novel semi-analytical
approach. It was first developed for modeling unbounded domains with arbitrary
geometry as the consistent infinitesimal finite-element cell method (Wolf and Song,
1996). The original derivation of the SBFEM for scalar wave propagation was pro-
posed by Song and Wolf (1995). In modeling of a circular cavity embedded in a
full-plane with radius r0 (see Fig. 5.2.1(a)), the scaling center O is located at the
center of the circular cavity so that the circular boundary Γ can be visible from it.

The circular boundary Γ shown in Fig. 5.2.1(a) is discretized by one-dimensional
line elements. The total number of nodes is denoted as n. A typical element is shown
in Fig. 5.2.1(b). Its geometry can be expressed in the scaled boundary coordinates
(ξ,η) as

x̂ = ξx(η) (5.3.1a)

ŷ = ξy(η) (5.3.1b)

where ξ is the radial coordinate that ξ ≥ 1, and η the circumferential coordinate
that -1≤ η ≤1. The functions x(η) and y(η) in Eq. (5.3.1) are defined as functions
of the circumferential coordinate η,

x(η) = rcos(θ(η)) (5.3.2a)

y(η) = rsin(θ(η)) (5.3.2b)

Only the coordinate θ(η) is interpolated by using the shape functions [N(η)] as

θ(η) = [N(η)]{θ} (5.3.3)

142



where {θ} denotes the circumferential coordinate vector of the nodes on the circular
boundary Γ. As referred in Wolf and Song (1996) and Wolf (2003), the vector of
spatial derivatives in the Cartesian coordinates {L} related to those in the scaled
boundary coordinates [ ∂

∂ξ
∂
∂η

]T is expressed as

{L} = [Ĵ(ξ, η)]−1[ ∂
∂ξ

∂
∂η

]T (5.3.4)

where [Ĵ(ξ, η)] is the Jacobian matrix, which is expressed as

[Ĵ(ξ, η)] =

[
x̂,ξ ŷ,ξ

x̂,η ŷ,η

]
=

⌈
1

ξ

⌋
[J(η)] (5.3.5)

and its inverse is

[Ĵ(ξ, η)]−1 = [J(η)]−1

⌈
1

1/ξ

⌋
(5.3.6)

[J(η)] in Eq. (5.3.5) is expressed as (using Eq. (5.3.2)),

[J(η)] =

[
x y

x,η y,η

]
= r

[
cos(θ(η)) sin(θ(η))

−sin(θ(η))θ(η),η cos(θ(η))θ(η),η

]
(5.3.7)

Its inverse and determinant are

[J(η)]−1 =
r

|J(η)|

[
cos(θ(η))θ(η),η −sin(θ(η))

sin(θ(η))θ(η),η cos(θ(η))

]
(5.3.8)

|J(η)| = r2θ(η),η = r2[N(η)],η {θ} (5.3.9)

respectively. Substituting Eq. (5.3.6) into Eq. (5.3.4) and using Eq. (5.3.8) yield

{L} = {b1(η)} ∂

∂ξ
+

1

ξ
{b2(η)} ∂

∂η
(5.3.10)

where {b1(η)} and {b2(η)} are defined as

{b1(η)} =
1

r
[ cos(θ(η)) sin(θ(η)) ]T (5.3.11a)

{b2(η)} =
r

|J(η)| [ −sin(θ(η)) cos(θ(η)) ]T (5.3.11b)

Note that {b1(η)} and {b2(η)} are orthogonal.
The displacements along radial lines passing through the scaling center O and

a node on the boundary are represented by nodal displacement functions {u(ξ)}.
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The displacement field u in Eq. (5.2.2) is approximated by interpolating the nodal
displacement function {u(ξ)} piecewisely,

u = u(ξ, η) = [N(η)]{u(ξ)} (5.3.12)

Substituting Eqs. (5.3.10) and (5.3.12) into Eq. (5.2.2) yields

{γ} = [B1(η)]{u(ξ)},ξ +
1

ξ
[B2(η)]{u(ξ)} (5.3.13)

where [B1(η)] and [B2(η)] are defined as

[B1(η)] = {b1(η)}[N(η)] (5.3.14a)

[B2(η)] = {b2(η)}[N(η)],η (5.3.14b)

Substituting Eq. (5.3.13) into Eq. (5.2.3) leads to

{τ} = G([B1(η)]{u(ξ)},ξ +
1

ξ
[B2(η)]{u(ξ)}) (5.3.15)

Applying the virtual work principle or the Galerkin’s weighted residual method
(Wolf, 2003), the scaled boundary finite element equation in displacement is obtained
as

[E0]ξ2{U(ξ)},ξξ +[E0]ξ{U(ξ)},ξ −[E2]{U(ξ)} + ω2[M0]ξ2{U(ξ)} = 0 (5.3.16)

where ω is the excitation frequency, {U(ξ)} denotes the nodal displacement ampli-
tudes in the frequency domain, and the coefficient matrices [E0], [E2] and [M0] are
defined as

[E0] =

∫ +1

−1

[B1(η)]T G[B1(η)]|J(η)|dη (5.3.17a)

[E2] =

∫ +1

−1

[B2(η)]T G[B2(η)]|J(η)|dη (5.3.17b)

[M0] =

∫ +1

−1

[N(η)]T ρ[N(η)]|J(η)|dη (5.3.17c)

[E0] and [M0] are symmetric and positive definite. [E2] is also symmetric but
semi-positive definite. Because {b1(η)} and {b2(η)} are orthogonal for the circular
boundary Γ, the coefficient [E1] occurring in an arbitrary boundary vanishes (Fan
and Li, 2008).
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The internal nodal force vector {Q} is expressed as

{Q} = [E0]ξ{U(ξ)},ξ (5.3.18)

By substituting Eq. (5.3.14a) into Eq. (5.3.17a) and using Eq. (5.3.11a), Eq. (5.3.17a)
can be rewritten as

[E0] =
1

r2

∫ +1

−1

[N(η)]T G[N(η)]|J(η)|dη (5.3.19)

Equations (5.3.17c) and (5.3.19) are proportional to each other and can be written
in terms of

[M0] = (r/cs)
2[E0] (5.3.20)

using Eq. (5.2.8). After substituting Eq. (5.3.20) into Eq. (5.3.16), Eq. (5.3.16) can
be expressed as

[E0]ξ2{U(ξ)},ξξ +[E0]ξ{U(ξ)},ξ −[E2]{U(ξ)} + a2[E0]{U(ξ)} = 0 (5.3.21)

where the dimensionless frequency a is defined as

a =
ωrξ

cs

(5.3.22)

Note that the coefficient matrices of the full-plane at the circular boundary Γ are
obtained from the assembly of the coefficient matrices [E0], [E2] and [M0] of indi-
vidual elements. To simplify the nomenclature, the same symbols are used for the
assembled coefficient matrices.

5.4 Modal dynamic stiffness coefficients of full-plane

with circular cavity

The scaled boundary finite element equation (Eq. (5.3.21)) can be decoupled by
using the following eigenvalue problem,

[E2][Φ] = [E0][Φ]�λ2 (5.4.1)

where �λ2 and [Φ] denote the eigenvalues and eigenvectors, respectively. Since [E0]

is positive definite and [E2] is semi-positive definite, the eigenvectors are orthogonal.
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They are normalized as

[Φ]T [E0][Φ] = [I] (5.4.2a)

[Φ]T [E2][Φ] = �λ2 (5.4.2b)

Pre- and post-multiplying Eq. (5.3.21) by [Φ]T and [Φ], respectively and using Eq.
(5.4.2) result in

ξ2{Ũ},ξξ +ξ{Ũ},ξ −�λ2{Ũ} + a2{Ũ} = 0 (5.4.3)

with

{Ũ} = [Φ]−1{U(ξ)} (5.4.4)

Equation (5.4.3) is decomposed into a series of independent modal equations,

ξ2Ũj,ξξ +ξŨj,ξ +(a2 − λ2
j)Ũj = 0 (j = 1, 2, . . . , n) (5.4.5)

where j denotes the modal index. The interaction force vector {R} relates to the
internal nodal force vector {Q} as the following equations:

{R} = −{Q} (5.4.6)

Substituting Eq. (5.3.18) into Eq. (5.4.6), pre-multiplying the equation by [Φ]T , and
using Eqs. (5.4.2a) and (5.4.4) leads to the modal forces

{R̃} = −ξ{Ũ},ξ (5.4.7)

with

{R̃} = [Φ]T{R} (5.4.8)

Equation (5.4.8) is equivalent to a series of modal equations,

R̃j = −ξŨj,ξ (j = 1, 2, . . . , n) (5.4.9)

The modal dynamic stiffness coefficient Sj = Sj(a, ξ) is defined by the force-displacement
relationship of each mode

R̃j = SjŨj (j = 1, 2, . . . , n) (5.4.10)
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Proceeding as in Chapter 3 by eliminating R̃j and Ũj from Eqs. (5.4.5), (5.4.9),
and (5.4.10), the equations of modal dynamic stiffness coefficients on the circular
boundary Γ (r = r0 and ξ = 1) can be obtained as

(Sj(a0))
2 − a0(Sj(a0)),a0 +a2

0 − λ2
j = 0 (j = 1, 2, . . . , n) (5.4.11)

where the dimensionless frequency is

a0 =
ωr0

cs

(5.4.12)

The exact solution of the modal stiffness was obtained in Chapter 3 and given in
Eq. (3.2.27) as

Sex,j (a0) = − a0

H
(2)
λj

(a0)
(H

(2)
λj

(a0)),a0 = λj −
H

(2)
λj−1(a0)

H
(2)
λj

(a0)
(j = 1, 2, . . . , n)

(5.4.13)

where H
(2)
λj

(a0) and H
(2)
λj−1(a0) are the second-kind Hankel functions of order λj and

order λj − 1, respectively.

5.5 Doubly asymptotic continued fraction solution

for modal dynamic stiffness coefficients

This section describes the solution of the scaled boundary finite element equation
for modal dynamic stiffness coefficient (Eq. (5.4.11)). The solution is sought as
a doubly asymptotic continued fraction solution. Two steps are involved in the
solution procedure. In the first step detailed in Section 5.5.1, a continued fraction
solution is determined at the high-frequency limit recursively. In each recursion, the
coefficients of one term of the continued fractions is obtained, and an equation is
established for the residual. In the second step detailed in Section 5.5.2, a continued
fraction solution of the residual equation of the high-frequency solution is determined
at the low-frequency limit recursively. The doubly asymptotic solution is obtained
by joining the low-frequency solution to the last term of the high-frequency solution.
For simplicity in the derivation, the modal index j is omitted in this section.
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5.5.1 Continued fraction solution at high frequency

The continued fraction solution at high frequency is written as

S(a0) = K∞ + (ia0)C∞ − (ψ(1))2(Y (1)(a0))
−1 (5.5.1a)

Y (i)(a0) = Y
(i)
0 + (ia0)Y

(i)
1 − (ψ(i+1))2(Y (i+1)(a0))

−1 (i = 1, 2, ..., MH)

(5.5.1b)

where K∞, C∞, Y
(i)
0 and Y

(i)
1 are coefficients to be determined recursively in the

solution procedure. In comparison with the solution in Eq. (3.3.2) in Chapter 3 for
the modal stiffness of the homogeneous, the additional factor coefficients ψ(1) and
ψ(i+1) are introduced in order to improve the numerical stability of the solution pro-
cedure. To maintain the symmetry of the coefficient matrices of the open boundary
(Eq. (5.6.16) in Section 5.6), the square of the factor coefficients are used in the
residual terms (ψ(1))2(Y (1)(a0))

−1 and (ψ(i+1))2(Y (i+1)(a0))
−1. MH is the order of

the continued fraction solution at high frequency.
The coefficients K∞ and C∞ are determined by substituting Eq. (5.5.1a) into Eq.

(5.4.11). This leads to an equation of a power series of (ia0), including the following
three terms:

(ia0)
2(C2

∞−1)+ia0(2C∞K∞−C∞)+
(
K2

∞−λ2−2((ia0)C∞+K∞)(ψ(1))2(Y (1)(a0))
−1

+ (ψ(1))4(Y (1)(a0))
−2 − a0(ψ

(1))2(Y (1)(a0))
−2(Y (1)(a0)),a0

)
= 0 (5.5.2)

This equation is satisfied by setting all the three terms equal to zero. Thus the
solution for C∞ that satisfies the radiation condition is obtained from the first term
((ia0)

2 term) by selecting the positive root

C∞ = 1 (5.5.3)

By substituting Eq. (5.5.3) into the second term of Eq. (5.5.2) ((ia0) term), the
solution for K∞ is determined as

K∞ = 0.5 (5.5.4)

The last term of Eq. (5.5.2) is an equation of (Y (1)(a0))
−1. After being multiplied

by (Y (1)(a0))
2(ψ(1))−2, it is expressed as the i = 1 case of

a(i) − 2(b
(i)
0 + (ia0))Y

(i)(a0) + c(i)(Y (i)(a0))
2 − a0(Y

(i)(a0)),a0 = 0 (5.5.5)
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with the following constants:

a(1) = (ψ(1))2 (5.5.6a)

b
(1)
0 = 0.5 (5.5.6b)

c(1) = (0.25 − λ2)/(ψ(1))2 = sgn(1) (5.5.6c)

The factor coefficient ψ(1) is selected to avoid the occurrence of c(1) = 0. A simple
and convenient choice is

ψ(1) = |0.25 − λ2|1/2 (5.5.7)

Equation (5.5.6) is rewritten as

a(1) = |0.25 − λ2| (5.5.8a)

b
(1)
0 = 0.5 (5.5.8b)

c(1) = sgn(1) =

⎧⎨⎩+1, when 0.25 − λ2 ≥ 0

−1, when 0.25 − λ2 < 0
(5.5.8c)

with the sign function sgn(1).
To begin the recursive procedure, Eq. (5.5.1b) is substituted into Eq. (5.5.5).

This also results in an equation of a power series of (ia0) grouped into the following
three terms:

(ia0)
2(c(i)(Y

(i)
1 )2 − 2Y

(i)
1 ) + (ia0)(2c

(i)Y
(i)
0 Y

(i)
1 − 2b

(i)
0 Y

(i)
1 − 2Y

(i)
0 − Y

(i)
1 )

+
(
a(i) − 2b

(i)
0 Y

(i)
0 + c(i)(Y

(i)
0 )2 + (2((ia0) + b

(i)
0 ) − 2c(i)(Y

(i)
0 + (ia0)Y

(i)
1 ))

× (ψ(i+1))2(Y (i+1)(a0))
−1 + c(i)(ψ(i+1))4(Y (i+1)(a0))

−2

− (ψ(i+1))2(Y (i+1)(a0))
−2a0(Y

(i+1)(a0)),a0

)
= 0 (5.5.9)

Equation (5.5.9) is also satisfied by setting all the three terms equal to zero. The
first term ((ia0)

2 term) leads to an equation of Y
(i)
1 . Its non-zero solution is equal

to

Y
(i)
1 = 2/c(i) = 2/sgn(i) (5.5.10)
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Setting the second term ((ia0) term) to zero yields an equation of Y
(i)
0 . By using

Eq. (5.5.10), its solution is obtained as

Y
(i)
0 = (2b

(i)
0 + 1)/c(i) = (2b

(i)
0 + 1)/sgn(i) (5.5.11)

Note that the solution of Y
(i)
1 in Eq. (5.5.10) and of Y

(i)
0 in Eq. (5.5.11) will be

singular when the constant c(i) appearing in the denominators is equal to zero. In
the original doubly asymptotic continued fraction solution, this situation occurs
when the modal number λ = i/2 (i = 1, 2, . . .). When a modal number is close
to these values, Y

(i)
1 and Y

(i)
0 become very large and the continued fraction solution

becomes ill-conditioned. The above choice of the factor coefficient ψ(1) in Eq. (5.5.7)
ensures that the solutions of Y

(i)
1 and Y

(i)
0 remain finite as c(i) is equal to either +1

or −1. This improves the numerical accuracy and stability of the continued fraction
solution.

The last term in Eq. (5.5.9) is an equation of Y (i+1)(a0). It is simplified by sub-
stituting −2b

(i)
0 Y

(i)
0 + c(i)(Y

(i)
0 )2 = Y

(i)
0 reformulated from Eq. (5.5.11). Multiplying

the resulting equation by (Y (i+1)(a0))
2(ψ(i+1))−2 leads to an equation in the same

form as Eq. (5.5.5),

a(i+1) − 2(b
(i+1)
0 + (ia0))(Y

(i+1)(a0)) + c(i+1)(Y (i+1)(a0))
2 − a0(Y

(i+1)(a0)),a0 = 0

(5.5.12)

with the constant

a(i+1) = c(i)(ψ(i+1))2 (5.5.13a)

b
(i+1)
0 = b

(i)
0 + 1 (5.5.13b)

c(i+1) = (a(i) + Y
(i)
0 )/(ψ(i+1))2 = sgn(i+1) (5.5.13c)

The factor coefficient ψ(i+1) is set equal to

ψ(i+1) =

⎧⎨⎩|a(i) + Y
(i)
0 |1/2, when i < MH

|(2λ − 1)(a(MH) + Y
(MH)
0 )|1/2, when i = MH

(5.5.14)
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Equation (5.5.13) is rewritten as

a(i+1) = c(i)(ψ(i+1))2 (5.5.15a)

b
(i+1)
0 = i + 0.5 (5.5.15b)

c(i+1) = sgn(i+1) =

⎧⎨⎩+1, when a(i) + Y
(i)
0 ≥ 0

−1, when a(i) + Y
(i)
0 < 0

(5.5.15c)

where b
(i+1)
0 in Eq. (5.5.15b) is obtained from Eqs. (5.5.8b) and (5.5.13b).

The continued fraction solution is determined recursively using Eqs. (5.5.10)
and (5.5.11) where the constants a(i), b

(i)
0 and c(i) are initialized by Eq. (5.5.8) and

updated during the recursion with Eq. (5.5.15). As an example, the order MH = 2

continued fraction solution is evaluated explicitly as

Y
(1)
0 = 2/sgn(1); Y

(1)
1 = 2/sgn(1); ψ(1) = |0.25 − λ2|1/2 (5.5.16a)

Y
(2)
0 = 4/sgn(2); Y

(2)
1 = 2/sgn(2); ψ(2) = |2.25 − λ2|1/2 (5.5.16b)

After an MH order continued fraction solution is obtained at the high-frequency
limit, the residual satisfies Eq. (5.5.12) with i = MH . For later use in the low-
frequency limit, the following identity is derived from Eqs. (5.5.13), (5.5.11) and
(5.5.6):

(b
(i+1)
0 )2 − a(i+1)c(i+1) = (b

(i)
0 + 1)2 − c(i)a(i) − c(i)Y

(i)
0 = (b

(i)
0 )2 − c(i)a(i) = λ2

(5.5.17)

5.5.2 Continued fraction solution at low frequency

The residual equation (Eq. (5.5.12)) of the high-frequency continued fraction solution
is solved again by a continued fraction but at low frequency limit ω → 0. For
simplicity in notation, the residual is expressed as

YL(a0) = Y (MH+1)(a0) (5.5.18)

and Eq. (5.5.12) is rewritten as

aL − 2(bL0 + (ia0))(YL(a0)) + cL(YL(a0))
2 − a0(YL(a0)),a0 = 0 (5.5.19)

151



with the following constants used at the low-frequency limit:

aL = a(MH+1) = c(MH)(ψ
(0)
L )2 (5.5.20a)

bL0 = b
(MH+1)
0 = MH + 0.5 (5.5.20b)

cL = c(MH+1) = (a(MH) + Y
(MH)
0 )/(ψ

(0)
L )2 = sgn

(0)
L /|2λ − 1| (5.5.20c)

where

ψ
(0)
L = ψ(MH+1) (5.5.21a)

sgn
(0)
L = sgn(MH+1) (5.5.21b)

The continued fraction solution at the low-frequency limit is expressed as

YL(a0) = Y
(0)
L0 + (ia0)Y

(0)
L1 − (ia0)

2(ψ
(1)
L )2(Y

(1)
L (a0))

−1 (5.5.22a)

Y
(i)
L (a0) = Y

(i)
L0 + (ia0)Y

(i)
L1 − (ia0)

2(ψ
(i+1)
L )2(Y

(i+1)
L (a0))

−1 (i = 1, 2, . . . , ML)

(5.5.22b)

where Y
(0)
L0 , Y

(0)
L1 , Y

(i)
L0 and Y

(i)
L1 are coefficients to be determined recursively. The

factor coefficients ψ
(1)
L and ψ

(i+1)
L are introduced to improve the numerical stability of

the solution. (ia0)
2(ψ

(1)
L )2(Y

(1)
L (a0))

−1 and (ia0)
2(ψ

(i+1)
L )2(Y

(i+1)
L (a0))

−1 are residual
terms. ML is the order of the continued fraction solution at low frequency.

Substituting Eq. (5.5.22a) into Eq. (5.5.19) leads to an equation of a power series
of (ia0),

(aL − 2bL0Y
(0)
L0 + cL(Y

(0)
L0 )2) + (ia0)(−2Y

(0)
L0 − 2bL0Y

(0)
L1 + 2cLY

(0)
L0 Y

(0)
L1 − Y

(0)
L1 )

+ (ia0)
2
(
−2Y

(0)
L1 + cL(Y

(0)
L1 )2 + (2(bL0 + (ia0)) − 2cL(Y

(0)
L0 + (ia0)Y

(0)
L1 ))

× (ψ
(1)
L )2(Y

(1)
L (a0))

−1 + 2(ψ
(1)
L )2(Y

(1)
L (a0))

−1 + (ia0)
2cL(ψ

(1)
L )4(Y

(1)
L (a0))

−2

− (ψ
(1)
L )2(Y

(1)
L (a0))

−2a0(Y
(1)
L (a0)),a0

)
= 0 (5.5.23)

Similarly, this equation is satisfied by setting each of the three terms equal to
zero. The first term (constant term independent of (ia0)) yields

aL − 2bL0Y
(0)
L0 + cL(Y

(0)
L0 )2 = 0 (5.5.24)
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By using Eqs. (5.5.17) and (5.5.20), the determinant of this quadratic algebraic
equation is equal to

(2bL0)
2 − 4aLcL = 4λ2 (5.5.25)

Thus the solution for Y
(0)
L0 in Eq. (5.5.24) can be determined as

Y
(0)
L0 = (bL0 + λ)/cL = (bL0 + λ)|2λ − 1|/sgn

(0)
L (5.5.26)

by using Eq. (5.5.25). Setting the second term ((ia0) term) in Eq. (5.5.23) to zero
and using Eq. (5.5.26) lead to the solution for Y

(0)
L1 ,

Y
(0)
L1 = 2Y

(0)
L0 /(2λ − 1) = 2(bL0 + λ)/(sgn

(0)
L sgn

(0)
L0) (5.5.27)

with the sign function

sgn
(0)
L0 =

⎧⎨⎩+1, when 2λ − 1 ≥ 0

−1, when 2λ − 1 < 0
(5.5.28)

Multiplying the last term ((ia0)
2 term) of Eq. (5.5.23) by (Y

(1)
L (a0))

2(ψ
(1)
L )−2 results

in an equation of Y
(1)
L (a0). It is expressed as the i = 1 case of

(ia0)
2a

(i)
L − 2(b

(i)
L0 + (ia0)b

(i)
L1)Y

(i)
L (a0) + c

(i)
L (Y

(i)
L (a0))

2 − a0(Y
(i)
L (a0)),a0 = 0 (5.5.29)

with the following constants:

a
(1)
L = cL(ψ

(1)
L )2 (5.5.30a)

b
(1)
L0 = −1 − bL0 + cLY

(0)
L0 = −1 + λ (5.5.30b)

b
(1)
L1 = −1 + cLY

(0)
L1 = 2(MH + 1)/(2λ − 1) (5.5.30c)

c
(1)
L = (−2Y

(0)
L1 + cL(Y

(0)
L1 )2)/(ψ

(1)
L )2 = sgn

(1)
L /|(2b(1)

L0 − 1)(2λ − 1)| (5.5.30d)

where the factor coefficient ψ
(1)
L is chosen as

ψ
(1)
L = |(2b(1)

L0 − 1)(2λ − 1)(−2Y
(0)
L1 + cL(Y

(0)
L1 )2)|1/2 (5.5.31)

and the sign function sgn
(1)
L is equal to

sgn
(1)
L =

⎧⎨⎩+1, when − 2Y
(0)
L1 + cL(Y

(0)
L1 )2 ≥ 0

−1, when − 2Y
(0)
L1 + cL(Y

(0)
L1 )2 < 0

(5.5.32)
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Substituting the recursive equation of the low-frequency limit (Eq. (5.5.22b))
into Eq. (5.5.29), and rearranging the equation lead an equation of a power series
of (ia0),

(−2b
(i)
L0Y

(i)
L0 + c

(i)
L (Y

(i)
L0 )2) + (ia0)

(
−2(b

(i)
L1Y

(i)
L0 + b

(i)
L0Y

(i)
L1 ) + 2c

(i)
L Y

(i)
L0 Y

(i)
L1 − Y

(i)
L1

)
+ (ia0)

2
(
a

(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2 − 2(−1− b

(i)
L0 + c

(i)
L Y

(i)
L0 + (ia0)(−b

(i)
L1 + c

(i)
L Y

(i)
L1 ))

× (ψ
(i+1)
L )2(Y

(i+1)
L (a0))

−1 + (ia0)
2c

(i)
L (ψ

(i+1)
L )4(Y

(i+1)
L (a0))

−2

− (ψ
(i+1)
L )2(Y

(i+1)
L (a0))

−2a0(Y
(i+1)
L (a0)),a0

)
= 0 (5.5.33)

This equation is satisfied by setting each term equal to zero. The first term
(constant term independent of (ia0)) yields

Y
(i)
L0 = 2b

(i)
L0/c

(i)
L = 2b

(i)
L0|(

i

Π
k=1

(2b
(k)
L0 − 1))(2λ − 1)|/sgn

(i)
L (5.5.34)

Setting the second term of Eq. (5.5.33) ((ia0) term) to zero and using Eq. (5.5.34)
result in the solution for Y

(i)
L1 ,

Y
(i)
L1 = 2b

(i)
L1Y

(i)
L0 /(2b

(i)
L0 − 1)

= 4(MH + 1)(
i−1

Π
k=1

(2b
(k)
L0 + 1))(2b

(i)
L0)/(sgn

(i)
L (

i

Π
k=0

sgn
(k)
L0 )) (5.5.35)

where the sign function

sgn
(i)
L0 =

⎧⎨⎩+1, when 2b
(i)
L0 − 1 ≥ 0

−1, when 2b
(i)
L0 − 1 < 0

(5.5.36)

Note that the term
i−1

Π
k=1

(2b
(k)
L0 +1) in Eq. (5.5.35) is equal to one for i = 1. Multiplying

the last term of Eq. (5.5.33) by (Y
(i+1)
L (a0))

2(ψ
(i+1)
L )−2 yields the residual equation

(ia0)
2a

(i+1)
L − 2(b

(i+1)
L0 + (ia0)b

(i+1)
L1 )Y

(i+1)
L (a0) + c

(i+1)
L (Y

(i+1)
L (a0))

2

− a0(Y
(i+1)
L (a0)),a0 = 0 (5.5.37)
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with the constants updated recursively by

a
(i+1)
L = c

(i)
L (ψ

(i+1)
L )2 (5.5.38a)

b
(i+1)
L0 = c

(i)
L Y

(i)
L0 − b

(i)
L0 − 1 = b

(i)
L0 − 1 (5.5.38b)

b
(i+1)
L1 = c

(i)
L Y

(i)
L1 − b

(i)
L1 (5.5.38c)

c
(i+1)
L = (a

(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2)/(ψ

(i+1)
L )2

= sgn
(i+1)
L /|(

i+1

Π
k=1

(2b
(k)
L0 − 1))(2λ − 1)| (5.5.38d)

where the factor coefficient ψ
(i+1)
L is chosen as

ψ
(i+1)
L = |(

i+1

Π
k=1

(2b
(k)
L0 − 1))(2λ − 1)(a

(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2)|1/2 (5.5.39)

and the sign function sgn
(i+1)
L is equal to

sgn
(i+1)
L =

⎧⎨⎩+1, when a
(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2 ≥ 0

−1, when a
(i)
L − 2b

(i)
L1Y

(i)
L1 + c

(i)
L (Y

(i)
L1 )2 < 0

The continued fraction solution at low frequency is evaluated by using Eqs. (5.5.34)
and (5.5.35) whereby the recursive constants are initialized by Eq. (5.5.30) and
updated by Eq. (5.5.38). The doubly asymptotic continued fraction solution is
determined by combining the high-frequency continued fraction solution in Eq.
(5.5.1) with the low-frequency continued fraction solution in Eq. (5.5.22) using
Y (MH+1)(a0) = YL(a0) (Eq. (5.5.18)). It is expressed as

S(a0) = K∞ + (ia0)C∞

− (ψ(1))2

Y
(1)
0 + (ia0)Y

(1)
1 − (ψ(2))2

...− (ψ(MH ))2

Y
(MH )
0 +(ia0)Y

(MH )
1 − (ψ

(0)
L

)2

Y
(0)
L0 +(ia0)Y

(0)
L1 − (ia0)2(ψ

(1)
L

)2

Y
(1)
L0 +(ia0)Y

(1)
L1 − (ia0)2(ψ

(2)
L

)2

...− (ia0)2(ψ
(ML)
L

)2

Y
(ML)
L0 +(ia0)Y

(ML)
L1

(5.5.40)

Note that the residual term (ia0)
2(ψ

(ML+1)
L )2/Y

(ML+1)
L (a0) at the low-frequency limit

is neglected.
As an example, the low-frequency part of the order MH = ML = 2 doubly

asymptotic continued fraction solution is evaluated explicitly as

Y
(0)
L0 =

(λ+ 2.5)|2λ− 1|
sgn

(0)
L

; Y
(0)
L1 =

2(λ+ 2.5)

sgn
(0)
L sgn

(0)
L0

; ψ
(0)
L = |(λ+ 2.5)(2.5 − λ)(2λ− 1)|1/2 (5.5.41a)
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Y
(1)
L0 =

2(λ− 1)|(2λ− 1)(2λ− 3)|
sgn

(1)
L

; Y
(1)
L1 =

24(λ− 1)

sgn
(1)
L

1

Π
k=0

(sgn(k)
L0 )

;

ψ
(1)
L = |4(λ+ 2.5)(3.5 − λ)(2λ− 3)|1/2 (5.5.41b)

Y
(2)
L0 =

2(λ− 2)|(2λ− 1)(2λ− 3)(2λ− 5)|
sgn

(2)
L

; Y
(2)
L1 =

24(2λ− 1)(λ− 2)

sgn
(2)
L

2

Π
k=0

(sgn(k)
L0 )

;

ψ
(2)
L = |(4(λ+ 2.5)(3.5 − λ)(2λ− 3)2 + 288(λ− 1))(2λ− 5)|1/2 (5.5.41c)

The complete doubly asymptotic solution is obtained by combining Eqs. (5.5.16)
and (5.5.41).

5.6 Doubly asymptotic open boundary condition

The procedure of constructing the high-order doubly asymptotic open boundary
condition described in this section is based on the one described in Chapter 3. The
procedure begins with the modal force-displacement relationship in the frequency
domain as expressed in Eq. (5.4.10). The circular boundary Γ (a = a0 and ξ = 1)
is considered. By substituting the first equation of the continued fraction solution
at the high-frequency limit (Eq. (5.5.1a)) into Eq. (5.4.10), the following equation
is obtained:

R̃j = Sj(a0)Ũj = K∞,jŨ + (ia0)C∞,jŨj − (ψ
(1)
j )2(Y

(1)
j (a0))

−1Ũj (5.6.1)

Substituting Eqs. (5.5.4) and (5.5.3) into Eq. (5.6.1), and also introducing an aux-
iliary variable Ũ (1) to the equation lead to

R̃j = 0.5Ũj + (ia0)Ũj − ψ
(1)
j Ũ

(1)
j (5.6.2)

where the auxiliary variable Ũ
(1)
j is defined in

ψ
(1)
j Ũj = Y

(1)
j (a0)Ũ

(1)
j (5.6.3)

By using Eqs. (5.4.8) and (5.6.2), the amplitude of the nodal force vector is expressed
as

{R} = 0.5[Φ]−T{Ũ} + (ia0)[Φ]−T{Ũ} − [Φ]−T �ψ(1){Ũ (1)} (5.6.4)
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Substituting {Ũ} = [Φ]−1{U} (Eq. (5.4.4)) and [E0] = [Φ]−T [Φ]−1 (Eq. (5.4.2a))
into Eq. (5.6.4) leads to

{R} = 0.5[E0]{U} + (ia0)[E
0]{U} − [Φ]−T �ψ(1){Ũ (1)} (5.6.5)

where {U} denotes {U(ξ = 1)}. Substituting Eq. (5.5.1b) into Eq. (5.6.3) yields

ψ
(1)
j Ũj = Y

(1)
0,j Ũ

(1)
j + (ia0)Y

(1)
1,j Ũ

(1)
j − ψ

(2)
j Ũ

(2)
j (5.6.6)

where the auxiliary variable Ũ
(2)
j is defined as the i = 1 case in

ψ
(i+1)
j Ũ

(i)
j = Y

(i+1)
j (a0)Ũ

(i+1)
j (5.6.7)

Substituting {Ũ} = [Φ]−1{U} (Eq. (5.4.4)) into Eq. (5.6.6) formulated for all the
modes yields

�ψ(1)[Φ]−1{U} = �Y (1)
0 {Ũ (1)} + (ia0)�Y (1)

1 {Ũ (1)} − �ψ(2){Ũ (2)} (5.6.8)

Substituting the remaining terms of the continued fraction solution in Eq. (5.5.1b)
into Eq. (5.6.7) results in

ψ
(i)
j Ũ

(i−1)
j = Y

(i)
0,j Ũ

(i)
j + (ia0)Y

(i)
1,j Ũ

(i)
j − ψ

(i+1)
j Ũ

(i+1)
j (i = 2, 3, . . . , MH) (5.6.9)

The residual term of an order MH high-frequency continued fraction solution given
in Eq. (5.6.7) with i = MH is the initial term of the low-frequency continued fraction
(Eq. (5.5.22a)). It is expressed as

ψ
(MH+1)
j Ũ

(MH)
j = Y

(MH+1)
j (a0)Ũ

(MH+1)
j = YL,j(a0)Ũ

(0)
L,j (5.6.10)

with the auxiliary variable Ũ
(0)
L,j = Ũ

(MH+1)
j . Substituting Eq. (5.5.22a) into Eq.

(5.6.10) leads to

ψ
(0)
L,jŨ

(MH)
j = Y

(0)
L0,jŨ

(0)
L,j + (ia0)Y

(0)
L1,jŨ

(0)
L,j − (ia0)ψ

(1)
L,jŨ

(1)
L,j (5.6.11)

where the auxiliary variable Ũ
(1)
L,j is defined in the i = 1 case of

(ia0)ψ
(i)
L,jŨ

(i−1)
L,j = Y

(i)
L,j(a0)Ũ

(i)
L,j (5.6.12)
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Substituting Eq. (5.5.22b) into Eq. (5.6.12) leads to

(ia0)ψ
(i)
L,jŨ

(i−1)
L,j = Y

(i)
L0,jŨ

(i)
L,j + (ia0)Y

(i)
L1,jŨ

(i)
L,j − (ia0)ψ

(i+1)
L,j Ũ

(i+1)
L,j (i = 1, 2, . . . , ML)

(5.6.13)

For an order ML low-frequency continued fraction solution, Ũ
(ML+1)
L,j = 0 applies.

Assembling Eqs. (5.6.5), (5.6.8), (5.6.9), (5.6.11) and (5.6.13), and using Eq. (5.4.12)
lead to a system of linear equations,

([Kh] + (iω)[Ch]){Z} = {F} (5.6.14)

where {Z} contains the displacement amplitudes on the circular boundary Γ and
the auxiliary variables, and {F} the amplitude of the excitation forces applied on
the circular boundary Γ,

{Z} = [{U}, {Ũ (1)}, ..., {Ũ (MH)}, {Ũ (0)
L }, {Ũ (1)

L }, ..., {Ũ (ML)
L }]T (5.6.15a)

{F} = [{R}, 0, ..., 0, 0, 0, ..., 0]T (5.6.15b)

[Kh] is the stiffness matrix and [Ch] is the damping matrix

[Kh] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5[E0] −[Φ]−T �ψ(1)
−�ψ(1)T [Φ]−1 �Y (1)

0  −�ψ(2)
−�ψ(2)T . . . . . .

. . . �Y (MH)
0  −�ψ(0)

L 
−�ψ(0)

L T �Y (0)
L0  0

0 �Y (1)
L0  . . .
. . . . . . 0

0 �Y (ML)
L0 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6.16a)

[Ch] =
r0
cs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[E0] 0
0 �Y (1)

1  0

0
. . . . . .
. . . �Y (MH)

1  0
0 �Y (0)

L1  −�ψ(1)
L 

−�ψ(1)
L T �Y (1)

L1  . . .
. . . . . . −�ψ(ML)

L 
−�ψ(ML)

L T �Y (ML)
L1 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6.16b)

Both matrices are banded, symmetric and independent of time.
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Equation (5.6.14) represents the high-order doubly asymptotic open boundary
condition in the frequency domain. It is expressed in the time domain as a system
of first-order ordinary differential equations

[Kh]{z(t)} + [Ch]{ż(t)} = {f(t)} (5.6.17)

with

{z(t)} = [{u(t)}, {ũ(1)(t)}, ..., {ũ(MH)(t)}, {ũ(0)
L }, {ũ(1)

L (t)}, ..., {ũ(ML)
L (t)}]T

(5.6.18a)

{f(t)} = [{r(t)}, 0, ..., 0, 0, 0, ..., 0]T (5.6.18b)

Equation (5.6.17) represents the high-order doubly asymptotic open boundary con-
dition. It is temporally local. When the low-frequency terms are neglected, it
becomes a high-order singly asymptotic boundary condition.

5.7 Numerical examples

In this section, the accuracy of the improved high-order doubly asymptotic open
boundary is evaluated in the frequency and time domain. The ratio of the material
constants used in the analysis is G/ρ = 1.

In Section 5.7.1, a modal equation with the modal eigenvalue λ = 1.5, for which
the original doubly-asymptotic continued fraction solution in Chapter 3 breaks down,
is addressed to illustrate the robustness of the improved procedure. Afterwards, the
accuracy of the improved procedure for the analysis of a circular cavity embedded in
a full-plane is examined. The boundary of the circular cavity is discretized into line
elements. Applying the scaled boundary finite element method leads to a system of
modal equations. The mode with the highest modal eigenvalue and another mode of
an intermediate model eigenvalues are taken as examples to illustrate the accuracy
of the improved procedure for the whole range of modes.

In Sections 5.7.2, 5.7.3 and 5.7.4, the responses of the circular cavity to surface
tractions applied on its wall are computed. Several cases of surface tractions and
time history are considered. To verify the responses of the proposed open boundary,
analyses of extended finite element mesh are performed using ABAQUS, a commer-
cial finite element package, with 8-node isoparametric quadrilateral elements. In all
the analyses, the highest frequency of interest ωh is determined from the Fourier
transform of the time histories of the surface tractions. The corresponding shortest
wave period is equal to 2π/ωh, and the shortest wavelength is equal to csT . The
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mesh and size of time step Δt are chosen in such a way that 1 wavelength/period is
represented by at least 9 nodes/time steps.

The Newmark’s method with γ = 0.5 and β = 0.25 or the average acceleration
scheme (see Section A.2 in Appendix A) is adopted for Eq. (5.6.17). All the results
of displacement responses are normalized and plotted with respect to either the di-
mensionless frequency a0 = ωr0/cs (Eq. (5.4.12)) or the corresponding dimensionless
time t̄ = tcs/r0.

5.7.1 Illustration of robustness of improved doubly asymp-

totic open boundary for modal dynamic stiffness

As mentioned in Section 5.5, the factor coefficients are introduced to the doubly
asymptotic continued fraction solution to avoid the breakdown of the original con-
tinued fraction solution in Chapter 3. The breakdown occurs when the modal eigen-
value is equal to i + 0.5 (i is an integer). The mode with modal eigenvalue λ = 1.5

is chosen as an example. Since λ = 1.5, the singularity problem occurs when Y
(0)
L0 is

calculated in case of using the order MH = ML = 1, and Y
(2)
1 in case of using the

order MH = ML = 2 with the formulation in Chapter 3. cL which is the denom-
inator of Eq. (3.3.60) is zero, and thus Y

(0)
L0 calculated from Eq. (3.3.60) becomes

infinity. Similarly, c(2) which is the denominator of Eq. (3.3.45) is zero, and thus
Y

(2)
1 calculated from Eq. (3.3.45) becomes infinity. This singularity problem always

breaks down the procedures of determining the coefficients, and consequently, the
results cannot be plotted.

In contrast, by using the present formulation herein with the factor coefficients,
Y

(0)
L0 can be determined from Eq. (5.5.26) since the denominator is sgn

(0)
L = 1.

Similarly, Y
(2)
1 can be determined from Eq. (5.5.10) since the denominator is sgn(2) =

1. Thus, the singularity problem can be avoided and the results can be plotted.
The results of the solution are normalized by λ and plotted as a function of the
dimensionless frequency a0/λ as shown in Fig. 5.7.1.
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Figure 5.7.1: Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient (λ = 1.5): (a) real part and (b) imaginary part

When coupling the present open boundaries with the FEM, the SBFEM or other
numerical methods, a common mesh on the boundary is employed. The number of
modes and the modal eigenvalues depend on the mesh on the boundary. In the
following sections, the open boundary is discretized by 400 three-node elements
leading to 800 nodes in total. The nodes are spaced equally in the circumferential
direction (The mesh is not shown). The modal eigenvalues from Eq. (5.4.2b). The
eigenvalue of the first (lowest) mode λ1 is found to be 0 and that of the last (highest)
mode λ800 is equal to 493.124. It was shown by Bazyar and Song (2008) that when
the modal eigenvalue λ is lower than 6, accurate results can be obtained from the
singly asymptotic open boundary with the order MH = 4. In this case, doubly
asymptotic solution is not required.

The 40th mode is addressed. Its eigenvalue is λ40 ≈ 20. The orders of the
doubly asymptotic continued fraction solution are chosen as MH = ML = 1 and
MH = ML = 2. The solutions are plotted in Fig. 5.7.2 together with the exact
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solution in Eq. (5.4.13). The result of the order MH = ML = 1 open boundary agrees
very well with the exact solution except for the frequency range close to a0/λ = 1.
When the order increases to MH = ML = 2, both the real and imaginary parts
converge to the those of the exact solution. The difference is almost inappreciable.
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Figure 5.7.2: Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient (λ = 20): (a) real part and (b) imaginary part

The singly asymptotic continued fraction solution at high frequency is then inves-
tigated. The solution obtained from the order MH = 5, which has the same number
of terms as the MH = ML = 2 doubly asymptotic continued fraction solution, is
plotted in Fig. 5.7.3. The result is accurate only at high frequencies (a0/λ > 1). At
low frequencies (a0/λ < 1), the result does not agree with the exact solution. The
error increases when the frequency approaches zero. The accuracy of the solution
below a0/λ < 1 is significantly improved when the order is increased to MH = 15,
which is about 2.6 times the number of terms of the order MH = ML = 2 doubly
asymptotic continued fraction solution. This shows that the rate of convergence of
the singly asymptotic continued fraction solution is much slower.
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Figure 5.7.3: Singly asymptotic continued fraction solution for dynamic stiffness co-
efficient (λ = 20): (a) real part and (b) imaginary part

As illustrated in Chapter 3 and Bazyar and Song (2008), when the modal eigen-
value λ increases, the order of singly asymptotic continued fraction has to be in-
creased to maintain the same accuracy of results. Hence, mode 642 with modal eigen-
value λ642 ≈ 400 is chosen to further evaluate the accuracy of the doubly asymptotic
continued fraction solution. The results obtained from the orders MH = ML = 1 and
MH = ML = 2 are plotted in Fig. 5.7.4. It can be seen that the order MH = ML = 1

doubly asymptotic continued fraction solution is reasonably accurate. At the order
MH = ML = 2, the accuracy of the solution improves significantly, especially in the
range of 0.5 < a0/λ < 1.5. The doubly asymptotic solution agrees well with the
exact solution.
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Figure 5.7.4: Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient (λ = 400): (a) real part and (b) imaginary part

Comparison with the singly asymptotic continued fraction solution is performed.
The results obtained from the order MH = 5, MH = 17 and MH = 57 singly asymp-
totic solution are plotted in Fig. 5.7.5. It can be seen that the singly asymptotic
solution converges very slowly at low frequencies (a0/λ < 1). An accurate result
is obtained only when the order is increased up to MH = 57. This indicates that
the accuracy of the singly asymptotic continued fraction solution deteriorates as
the modal eigenvalue increases. In contrast, the accuracy of the doubly asymptotic
continued fraction solution is much less sensitive to the modal eigenvalue. Accurate
results can be achieved by using much fewer terms.
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Figure 5.7.5: Singly asymptotic continued fraction solution for dynamic stiffness co-
efficient (λ = 400): (a) real part and (b) imaginary part

5.7.2 Circular cavity subjected to transient surface traction

on entire boundary

The circular cavity is subjected to a surface traction p1(θ, t) on the entire circular
boundary Γ. The surface traction p1(θ, t) is given as

p1(θ, t) = h(θ)f(t) (5.7.1)

where h(θ) is a function of coordinate θ describing the spatial variation, and f(t)

describes the time history. The spatial function h(θ) is expressed as a cosine function,

h(θ) = cos(m × θ) (5.7.2)

where the integer m is selected as 60 so that the 60 wavelengths on the circular
boundary Γ can be represented by the 800 nodes. The time history f(t) is plotted
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in Fig. 5.7.6(a) with respect to the dimensionless time t̄ = tcs/r0. The peak value
is denoted as FT . The Fourier transform of the function f(t) is also plotted in Fig.
5.7.6(b) with respect to the dimensionless frequency a0. The highest dimensionless
frequency of interest ah is observed as 20.
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Figure 5.7.6: Function of antisymmetric triangle f(t): (a) time history and (b)
Fourier transform

The open boundary conditions are applied directly on the cavity wall Γ. The
present open boundary is discretized by 400 three-node elements.

An extended finite element mesh, as shown in Fig. 5.7.7, is analyzed in order to
obtain a reference solution to evaluate the accuracy of the present open boundary.
The radius of the outer circular boundary of the extended mesh is r = 3r0. The mesh
density on the circular boundary Γ is similar to that of the open boundary. The
circumferential direction is discretized by 400 elements spaced evenly and the radial
direction by 42 elements spaced evenly. The total number of nodes in the mesh is
51,200 which is 64 times the total number of nodes generated by the SBFEM.
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Figure 5.7.7: Mesh generated by FEM

The accuracy of the displacement responses at 5 specified points on the boundary
Γ are investigated. The points are spaced evenly with Point A located at θ = 0◦,
Point B at θ = 45◦, Point C at θ = 90◦, Point D at θ = 135◦ and Point E at
θ = 180◦.

The displacement responses obtained by using the order MH = ML = 1 doubly
asymptotic open boundary and the order MH = 3 and MH = 9 singly asymptotic
open boundary are normalized by FT /G and plotted in Figs. 5.7.8 and 5.7.9 with
respect to the dimensionless time t̄. It can be observed that the results obtained
from the doubly asymptotic open boundary are very accurate at all the 5 points
throughout the entire duration even at the order MH = ML = 1.

In comparison, the accuracy of the singly asymptotic open boundary is much
lower. At the order MH = 3, which has the same number of terms as the order
MH = ML = 1 doubly asymptotic open boundary, very poor results are observed,
especially within the range of 0 < t̄ < 2. Although the accuracy of the results is
improved when the order is increased to MH = 9, the results still differ significantly
from those of the extended mesh. Accurate results are obtained only when the order
is increased up to MH = 17 (the results are not plotted here since they are the same
as those of the extended mesh method). This clearly demonstrates that the rate
of convergence of the doubly asymptotic open boundary is much more higher than
that of the singly asymptotic open boundary.
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Figure 5.7.8: Displacement responses at Points A, C, and E to surface traction
p1(θ, t) obtained by doubly and singly asymptotic open boundaries
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Figure 5.7.9: Displacement responses at Points B and D to surface traction p1(θ, t)
obtained by doubly and singly asymptotic open boundaries

5.7.3 Circular cavity partially subjected to transient surface

traction

In this example, a part of the boundary of the circular cavity is subjected to a
surface traction p2(θ, t) given by

p2(θ, t) = g(θ)j(t) (5.7.3)
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where g(θ) is a multi-linear function depending on the coordinate θ,

g(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4 − θ/ |θ1 − θ2| when θ1 ≤ θ < θ2

2 + 2θ/ |θ2 − θ3| when θ2 ≤ θ < θ3

−θ/ |θ3 − θ4| when θ3 ≤ θ ≤ θ4

−θ/ |θ4 − θ5| when θ4 ≤ θ < θ5

−2 + 2θ/ |θ5 − θ6| when θ5 ≤ θ < θ6

4 − θ/ |θ6 − θ7| when θ6 ≤ θ ≤ θ7

0 otherwise

(5.7.4)
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Figure 5.7.10: Multi-linear function g(θ)

Here θ1 = −18◦, θ2 = −13.5◦, θ3 = −4.5◦, θ4 = 0◦, θ5 = 4.5◦, θ6 = 13.5◦ and
θ7 = 18◦, and j(t) is the time history plotted in Fig. 5.7.11(a). The peak value is
denoted as JT . The Fourier transform of the function j(t) is also plotted in Fig.
5.7.11(b). The highest dimensionless frequency of interest ah is observed as 6.
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Figure 5.7.11: Function of antisymmetric triangle j(t): (a) time history, and (b)
Fourier transform

This problem is challenging since the waves radiated from the vicinity of θ = 0◦

are attenuated by a geometric spreading loss as they propagate along longitudes
down to the south pole θ = 180◦.

An extended finite element mesh is analyzed. The outer circular boundary of the
mesh is located at the radius r = 8r0. 400 elements of equal length are introduced
along the circumferential direction, and 56 elements along the radial direction. The
total number of nodes in the mesh is 68, 000. It is obvious that the number of nodes
required by the SBFEM is considerably less than those of the FEM. The mesh
generated by the FEM is not shown since the mesh is very dense. The displacement
responses at 5 specified points (Points F , G, H, I and J) on the circular boundary
Γ are investigated. Point F is located at θ = 13.5◦ where the maximum traction
occurs, Point G at θ = 18◦ (an extremity of the loaded area), Point H at θ = 45◦,
Point I at θ = 108◦, and Point J at θ = 166.5◦.

The displacement responses obtained by using the order MH = ML = 1 and
MH = ML = 2 doubly asymptotic open boundary, and the order MH = 3 and
MH = 5 singly asymptotic open boundary are plotted in Figs. 5.7.12 and 5.7.13.
The order MH = ML = 1 doubly asymptotic open boundary yields the accurate
results at Points F , G (in the loaded area) and H (the vicinity of the loaded area)
throughout the entire duration as plotted in Fig. 5.7.12. At Points I and J , where
are far from the source of excitation, the order MH = ML = 1 open boundary still
yields the accurate results as shown in Fig. 5.7.13. Note that the relative differences
between the results obtained from the order MH = ML = 1 doubly asymptotic open
boundary and the results obtained from the extended mesh are very small.
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Figure 5.7.12: Displacement responses to surface traction p2(θ, t) by doubly and
singly asymptotic open boundaries: (a) at Point F , (b) at Point G
and (c) at Point H

In case of the order MH = 3 singly asymptotic open boundary with the same
number of terms as the order MH = ML = 1 doubly asymptotic open boundary, the
results at Points F , G and H are inaccurate within the range of 0 < t̄ < 5 as plotted
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in Fig. 5.7.12. By increasing the order to MH = 5, the results at Points F and G are
fairly improved but still having some differences from those of the extended mesh.
At Point H, the result becomes almost the same as that of the extended mesh. To
obtain sufficiently accurate results at Points F and G, the order must be increased
to MH = 9 (the results are not plotted here since they are the same as those of the
extended mesh method). At Points I and J , the order MH = 3 singly asymptotic
open boundary yields accurate results as plotted in Fig. 5.7.13. This example shows
that the accuracy of the doubly asymptotic open boundary is much higher within
the loaded area, and at the locations away from the loaded area, the accuracy of
both open boundaries are similar.
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Figure 5.7.13: Displacement responses to surface traction p2(θ, t) by doubly and
singly asymptotic open boundaries: (a) at Point I and (b) at Point
J
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5.7.4 Circular cavity subjected to concentrated surface trac-

tion

In the last example, the circular cavity is subjected to a surface traction p3(θ, t)

concentrated on a small area of the circular boundary Γ. The surface traction
p3(θ, t) is given as

p3(θ, t) = k(θ)τ0(t) (5.7.5)

where k(θ) is a multi-linear function of the coordinate θ, and τ0(t) is the time history
prescribed as a Ricker wavelet function with t̄s = 4 and t̄0 = 1 (see Eqs. (A.1.1) and
(A.1.2) in Appendix A). The multi-linear function k(θ) is given as

k(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2 − θ/ |θ1 − θ2| when θ1 ≤ θ < θ2

2θ/ |θ2 − θ3| when θ2 ≤ θ < θ3

2 − θ/ |θ4 − θ5| when θ3 ≤ θ ≤ θ4

0 otherwise

(5.7.6)
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Figure 5.7.14: Multi-linear function k(θ)

where θ1 = −9◦, θ2 = −4.5◦, θ3 = 4.5◦ and θ4 = 9◦. The Ricker wavelet function
is plotted in Fig. 5.7.15(a) and its Fourier transform plotted in Fig. 5.7.15(b). The
dominant dimensionless frequency ad is 2 while the highest dimensionless frequency
of interest ah is observed as 6.
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Figure 5.7.15: Ricker wavelet function: (a) time history and (b) Fourier transform

In the extended mesh analysis, the region between the circular boundary Γ and
the outer circular boundary at r = 11r0 is discretized by finite elements. The
region is divided into 400 elements in the circumferential direction and 58 elements
in the radial direction. The total number of nodes in the mesh is 70, 400. The
displacements responses at 5 specified points (Points K, L, M , N and O) on the
circular boundary Γ are investigated to evaluate the accuracy of the doubly and
singly asymptotic open boundaries. Point K is located at θ = 4.5◦ where the
maximum surface traction occurs, Point L at θ = 9◦ (an extremity of the loaded
area), Point M at θ = 45◦, Point N at θ = 108◦, and Point O at θ = 175.5◦.

The analyses are performed by using the order MH = ML = 1 doubly asymp-
totic open boundary, and the order MH = 3 and MH = 5 singly asymptotic open
boundary. The displacement responses are plotted in Figs. 5.7.16 and 5.7.17. The
results at Points K, L (in the loaded area) and Point M (in the vicinity of the loaded
area) obtained from the order MH = ML = 1 doubly asymptotic open boundary are
accurate throughout the entire duration as shown in Fig. 5.7.16. At Points N and

174



O, which are opposite to the loaded area, the order MH = ML = 1 open boundary
also leads to the accurate results as shown in Fig. 5.7.17.
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Figure 5.7.16: Displacement responses to surface traction p3(θ, t) by doubly and
singly asymptotic open boundaries: (a) at Point K, (b) at Point L
and (c) at Point M
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The singly asymptotic open boundary at the order MH = 3 exhibits fairly low
accuracy at Points K, L and M within the range of 0 < t̄ < 4 as shown in Fig.
5.7.16. Its accuracy improves as the order becomes higher. To achieve similar
accuracy to the order MH = ML = 1 doubly asymptotic open boundary, the order
must be increased to MH = 9 (the results are not plotted here since they are the
same as those of the extended method). Nevertheless, at Points N and O, the
results obtained from the order MH = 3 singly asymptotic open boundary are as
accurate as those of the order MH = ML = 1 doubly asymptotic open boundary.
This example confirms that the accuracy of the doubly asymptotic open boundary
is superior within or close to the loaded area.
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Figure 5.7.17: Displacement responses to surface traction p3(θ, t) by doubly and
singly asymptotic open boundaries: (a) at Point N and (b) at Point
O
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5.8 Conclusions

The high-order doubly asymptotic open boundary has been constructed herein for
scalar wave propagation in a full-plane with a circular cavity. From the numerical
results obtained in the frequency and time domain, it can be concluded that

1. The present procedure introducing the factor coefficients improves the nu-
merical robustness of the doubly asymptotic continued fraction solution. In
comparison with the singly asymptotic solution at high frequency, the dou-
bly asymptotic continued fraction solution with the same number of terms is
more accurate. In addition, the rate of convergence of the doubly asymptotic
solution is much higher than that of the singly asymptotic solution when the
modal eigenvalue is high.

2. The improved doubly asymptotic continued fraction solution are formulated
in the time domain as an open boundary condition. The open boundary is
temporally local. It is expressed as first-order ordinary differential equation in
time. The two time-independent coefficient matrices, the stiffness matrix [Kh]

and the damping matrix [Ch] are banded and symmetric. Thus well-established
time-stepping schemes in structural dynamics are directly applicable.

3. In a time domain analysis, the improved doubly asymptotic open boundary ex-
hibits significantly higher accuracy than the singly asymptotic open boundary,
especially within and close to the loaded areas. The high-order doubly asymp-
totic open boundary is advantageous for transient analyses where high-order
modes are excited.
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Chapter 6

Doubly Asymptotic Open Boundary
for Scalar Wave Propagation in
Semi-Infinite Layered Systems

Abstract

The propagation of scalar waves in semi-infinite layered systems with a constant
depth is addressed. The challenge is that the scaled boundary finite element equa-
tions cannot be decoupled by frequency-independent modes and has to be solved
in matrix form. The doubly asymptotic continued fraction solution for a dynamic
stiffness matrix is obtained by solving the scaled boundary finite element equations
in matrix form. The factor matrices are introduced to the continued fraction so-
lution to improve the numerical stability of the solution. The coefficients of the
solution are determined recursively by satisfying the scaled boundary finite element
equation in dynamic stiffness at both high- and low-frequency limits. By introduc-
ing auxiliary variables and using the doubly asymptotic continued fraction solution,
the force-displacement relationship on the boundary is formulated as a high-order
doubly asymptotic open boundary condition in the frequency domain. The open
boundary is expressed as a system of first-order ordinary differential equations in
the time domain. Standard time-step schemes can be directly applied to perform
the time integration. No parameters other than the orders of continued fraction are
selected by the user.
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6.1 Introduction

In modeling of unbounded domains for wave propagation problems, the boundary
condition at infinity must be satisfied. Imposing the condition of vanishing dis-
placement amplitude at infinity is insufficient to seek a unique solution for a wave
propagation problem. A radiation condition has to be enforced. In 1949, Sommer-
feld proposed the radiation condition in order to guarantee the uniqueness of solution
for scalar waves in the frequency domain (Sommerfeld, 1949). Only outgoing waves
can satisfy the radiation condition while incoming waves cannot.

When the boundary element method (BEM) (Dominguez, 1993; Hall and Oliveto,
2003), which is a rigorous method, is employed in the modeling of an unbounded
domain, the radiation condition is automatically satisfied as part of the fundamen-
tal solution. Only the boundary of the unbounded domain is discretized, thereby
reducing the spatial dimension by one. Nevertheless, the fundamental solution may
be very complex, for example, in the case of anisotropic materials (Wolf and Song,
1996). The scaled boundary finite element method (SBFEM) is a rigorous method
which is suited for modeling unbounded domains (Wolf and Song, 1996; Song and
Wolf, 1997; Wolf and Song, 2000; Wolf, 2003). This approach combines some of the
appealing features of the finite element method (FEM) and the BEM. It can satisfy
the radiation condition automatically without any use of fundamental solutions. In
recent years, the SBFEM has been extended to non-homogeneous unbounded do-
mains for static and dynamic analyses as reported by Doherty and Deeks (2003c,b,a)
and Bazyar and Song (2006a,b). For the modeling of unbounded domains as layered
media, the thin-layer method (TLM), which is also a rigorous method, has been
widely used for long time. This approach has been developed continuously so that
it can be employed in both frequency- and time-domain analyses (Lysmer, 1970;
Lysmer and Waas, 1972; Waas, 1972; Kausel, 1994). It is also applicable to inhomo-
geneous layered media as presented by Waas and Hartmann (1988). In recent years,
the TLM has been formulated in the wavenumber-time domain for a homogeneous
layer underlain by an elastic half-space in two dimensions (Park and Kausel, 2006;
Kausel and Park, 2006).

However, when these rigorous methods are employed for the modeling of un-
bounded domains, the procedure for calculation is spatially and temporally global
due to convolution integrals (Feltrin, 1997). This results in a large computational
effort which is inappropriate for evaluating large practical problems because of their
large demand on storage capacity and computing time (Bennett, 1976). In addition
to these rigorous methods, unbounded domains can be modeled by employing the
FEM with either the extended mesh method or an artificial boundary. The extended
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mesh method is simple but cannot satisfy the radiation condition due to the wave
reflections at the truncated boundary. Therefore, the truncated boundary must be
sufficiently far from the source of excitation to prevent such wave reflections. In
case of using an artificial boundary, propagating waves are able to be transmitted
through the boundary without any reflections (Givoli, 1991).

The boundary conditions enforced on artificial boundaries are chosen to be spa-
tially and temporally local and, therefore, approximate. No convolution integrals are
required. Hence they are numerically much more efficient than the rigorous methods
(Feltrin, 1997). The first artificial boundary is the viscous boundary, a low-order
absorbing boundary (Lysmer and Kuhlemeyer, 1969), which was further developed
by White et al. (1977) and Akiyoshi (1978). In order to improve the accuracy of
low-order absorbing boundaries, several high-order absorbing boundary conditions
(high-order ABCs) have been developed such as the Engquist-Majda ABC (Engquist
and Majda, 1979), the Bayliss-Gunzburger-Turkel ABC (Bayliss et al., 1982) and
the Higdon ABC (Higdon, 1986). However, the increase of the derivative orders of
these ABCs renders them impractical for implementation when the orders are typi-
cally higher than two (Givoli, 2004). This led to the development of local high-order
ABCs (Collino, 1993; Hagstrom and Warburton, 2004; Bécache et al., 2010). These
local high-order ABCs are convenient for implementation since no high derivatives
involve in the derivation due to use of auxiliary variables (Givoli, 2004).

Most of artificial boundaries are only singly asymptotic at the high-frequency
limit, in other words, they take into account only propagating modes. They are thus
appropriate for simulating propagating waves, but not evanescent waves. Hagstrom
et al. (2008) showed that the inclusion of evanescent modes was able to improve the
accuracy of the long-time behavior of the absorbing boundary. This has also been
proved in Chapter 3 that the singly asymptotic open boundary is unable to trans-
mit evanescent waves below the cut-off frequencies in the semi-infinite layer with a
constant depth, thereby causing “fictitious reflections” in late-time responses. Only
the doubly asymptotic open boundary is suitable for simulating wave propagation
in long-time analyses.

The objective of this chapter is to develop a doubly asymptotic open boundary for
scalar wave propagation in semi-infinite layered systems by extending the SBFEM.
This is a challenging task as the scaled boundary finite element equation can no
longer be decoupled into a series of one-dimensional problems and has to be solved
in matrix form. This chapter is organized as follows: in Section 6.2, the governing
differential equation (the equation of the out-of-plane motion) of a semi-infinite
layered system is derived for scalar waves. In Section 6.3, the SBFE equation in
displacement of the semi-infinite layered system is derived in the time domain. In
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Section 6.4, the SBFE equation in dynamic stiffness of the semi-infinite layered
system is derived in the frequency domain. In Section 6.5, the derivation of the
doubly asymptotic continued fraction solution for dynamic stiffness is presented.
In Section 6.6, the high-order doubly asymptotic open boundary condition of the
semi-infinite layered system is constructed in both frequency and time domains.
In Section 6.7, numerical examples are demonstrated in the frequency and time
domains. In Section 6.8, conclusions are presented.

6.2 Governing differential equation of scalar waves

A semi-infinite layered system with constant depth h is shown in Fig. 6.2.1(a). The
semi-infinite layered system composes of sublayers. A sublayer is shown in Fig.
6.2.1(b). The material constants are the shear modulus G and the density ρ which
are assumed to be constant throughout each sublayer and may change from sublayer
to sublayer. The out-of-plane motion u = u(x, y, t) of a sublayer in the Cartesian
coordinates (x,y) is considered. For the boundary conditions, it is assumed that the
vertical boundary ΓV located at x = xb is subjected to time-dependent out-of-plane
shear stresses. The Neumann boundary condition is imposed on the upper boundary
ΓU i.e. it is allowed to be free (u,y (y = h) = 0), and the Dirichlet boundary condition
is imposed on the lower boundary, which is fixed (u(y = 0) = 0).

(a)
x

y

η

ξ

ΓV

+∞hO

ΓU

ΓL

V

(b)

η

ξ

+1

00

-1

Figure 6.2.1: Semi-infinite layered system with constant depth: (a) geometry and
semi-discretization, and (b) sublayer and typical element

Introducing the differential operator denoting the vector of spatial derivatives in
the Cartesian coordinates,

{L} = [ ∂
∂x

∂
∂y

]T (6.2.1)

The out-of-plane shear strains {γ} = [ γzx γzy ]T are expressed as

{γ} = {L}u (6.2.2)
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The out-of-plane shear stresses {τ} = [ τzx τzy ]T are equal to

{τ} = G{γ} (6.2.3)

The governing differential equation of motion is expressed as

{L}T{τ} − ρü = 0 (6.2.4)

where ü is acceleration in the out-of-plane direction. Substituting Eq. (6.2.3) into Eq.
(6.2.4) and using Eqs. (6.2.2) and (6.2.1) lead to the scalar wave equation formulated
in two-dimensional Cartesian coordinates,

∇2u =
1

c2
s

ü (6.2.5)

where ∇2 is the Laplace operator,

∇2 =
∂2

∂x2
+

∂2

∂y2
(6.2.6)

and cs the speed of shear wave,

cs =

√
G

ρ
(6.2.7)

6.3 Scaled boundary finite element method for semi-

infinite layered system

The scaled boundary finite element method (SBFEM) is a novel semi-analytical
approach. It was first developed for modeling unbounded domains with arbitrary
geometry as the consistent infinitesimal finite-element cell method (Wolf and Song,
1996). The original derivation of the SBFEM for scalar wave propagation was pro-
posed by Song and Wolf (1995). In modeling of the semi-infinite layered system
with constant depth h, which is a special case (see Fig. 6.2.1(a)), the scaling center
O is located at infinity, and thus the scaling corresponds to translating the vertical
boundary ΓV (Li et al., 2005).

The vertical boundary ΓV shown in Fig. 6.2.1(a) is discretized by one-dimensional
line elements. A typical element is shown in Fig. 6.2.1(b). Its geometry can be
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expressed in the scaled boundary coordinates (ξ, η) as

x(ξ) = xb + ξ (6.3.1a)

y(η) = [N(η)]{yb} (6.3.1b)

where ξ is the horizontal coordinate that ξ ≥ 0, η the vertical coordinate that -
1≤ η ≤1, [N(η)] the shape function formulated in the coordinate η, and {yb} the
vertical coordinate vector of the nodes on the vertical boundary ΓV . As referred
in Wolf and Song (1996) and Wolf (2003), the vector of spatial derivatives in the
Cartesian coordinates {L} is related to those in the scaled boundary coordinates
[ ∂

∂ξ
∂
∂η

]T by

{L} = [J(η)]−1[ ∂
∂ξ

∂
∂η

]T (6.3.2)

where [J(η)] is the Jacobian matrix, which is expressed as

[J(η)] =

[
x(ξ),ξ y(η),ξ

x(ξ),η y(η),η

]
=

[
1 0

0 y(η),η

]
(6.3.3)

Its inverse and determinant are

[J(η)]−1 =
1

|J(η)|

[
y(η),η 0

0 1

]
(6.3.4)

|J(η)| = y(η),η = [N(η)],η {yb} (6.3.5)

respectively. Substituting Eq. (6.3.4) into Eq. (6.3.2) and using Eq. (6.3.5) yield

{L} = {b1} ∂

∂ξ
+ {b2(η)} ∂

∂η
(6.3.6)

where {b1} and {b2(η)} are defined as

{b1} = [ 1 0 ]T (6.3.7a)

{b2(η)} =
1

|J(η)| [ 0 1 ]T (6.3.7b)

Note that {b1} and {b2(η)} are orthogonal.
The displacements along the horizontal direction and a node on the boundary

are represented by nodal displacement functions {u(ξ)}. The displacement field u in
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Eq. (6.2.2) is approximated by interpolating the nodal displacement function {u(ξ)}
piecewisely,

u = u(ξ, η) = [N(η)]{u(ξ)} (6.3.8)

Substituting Eqs. (6.3.6) and (6.3.8) into Eq. (6.2.2) yields

{γ} = [B1(η)]{u(ξ)},ξ +[B2(η)]{u(ξ)} (6.3.9)

where [B1(η)] and [B2(η)] are defined as

[B1(η)] = {b1}[N(η)] (6.3.10a)

[B2(η)] = {b2(η)}[N(η)],η (6.3.10b)

Substituting Eq. (6.3.9) into Eq. (6.2.3) leads to

{τ} = G([B1(η)]{u(ξ)},ξ +[B2(η)]{u(ξ)}) (6.3.11)

In the derivation of the scale boundary finite element equation in displacement,
the virtual work principle∫

V

{γ∗}T{τ}dV =

∫
V

u∗(ξ, η)ρüdV +

∫
ΓV

u∗(ξ, η)τsdΓV (6.3.12)

is employed (Wolf, 2003). The left-hand side of the equation represents the internal
virtual work where the virtual shear strain vector {γ∗} is formulated as the same as
the shear strain vector in Eq. (6.3.9). The right-hand side is the external work of
the inertial force and the surface traction τs where the virtual displacements u∗(ξ, η)

is approximated by

u∗(ξ, η) = [N(η)]{u∗(ξ)} = {u∗(ξ)}T [N(η)]T (6.3.13)

using the same shape function as that in Eq. (6.3.8). For a two-dimensional problem,
the third dimension is assumed to be a unit length. An infinitesimal area dV and
an infinitesimal boundary dΓV are expressed as

dV = |J(η)|dξdη (6.3.14a)

dΓV = |J(η)|dη (6.3.14b)
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respectively. For convenience, each term in Eq. (6.3.12) is considered individually.
Using Eq. (6.3.9) for {γ∗} (but replace {u(ξ)} with {u∗(ξ)}) and substituting Eqs.
(6.3.11) and (6.3.14a) into the single term on the left-hand side of Eq. (6.3.12) yield∫

V

{γ∗}T{τ}dV =

∫ ∞

0

{u∗(ξ)}T
,ξ[E

0]{u(ξ)},ξ dξ +

∫ ∞

0

{u∗(ξ)}T [E2]{u(ξ)}dξ

(6.3.15)

where the coefficient matrices [E0] and [E2] are defined as

[E0] =

∫ +1

−1

[B1(η)]T G[B1(η)]|J(η)|dη (6.3.16a)

[E2] =

∫ +1

−1

[B2(η)]T G[B2(η)]|J(η)|dη (6.3.16b)

[E0] is symmetric and positive definite. [E2] is also symmetric but semi-positive
definite. Since {b1(η)} and {b2(η)} are orthogonal for the vertical boundary ΓV , the
coefficient [E1] occurring in an arbitrary boundary vanishes (Fan and Li, 2008).

To eliminate the derivatives {u∗(ξ)},Tξ in the first term on the right-hand side of
Eq. (6.3.15), integration by parts is applied. This results in∫ ∞

0

{u∗(ξ)},Tξ [E0]{u(ξ)},ξ dξ ={u∗(ξ)}T [E0]{u(ξ)},ξ

−
∫ ∞

0

{u∗(ξ)}T [E0]{u(ξ)},ξξ dξ (6.3.17)

Substituting Eq. (6.3.17) back into Eq. (6.3.15) results in∫
V

{γ∗}T{τ}dV ={u∗(ξ)}T [E0]{u(ξ)},ξ −
∫ ∞

0

{u∗(ξ)}T [E0]{u(ξ)},ξξ dξ

+

∫ ∞

0

{u∗(ξ)}T [E2]{u(ξ)}dξ (6.3.18)

Substituting Eqs. (6.3.8), (6.3.13) and (6.3.14a) into the first term on the right-hand
side of Eq. (6.3.12) results in∫

V

u∗(ξ, η)ρüdV =

∫ ∞

0

{u∗(ξ)}T [M0]{ü}dξ (6.3.19)

where the coefficient matrix [M0] is defined as

[M0] =

∫ +1

−1

[N(η)]T ρ[N(η)]|J(η)|dη (6.3.20)
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[M0] is also symmetric and positive definite. Substituting Eqs. (6.3.13) and (6.3.14b)
into the last term on the right-hand side of Eq. (6.3.12) results in∫

ΓV

u∗(ξ, η)τsdΓV = {u∗(ξ)}T{Q} (6.3.21)

where the internal nodal force vector {Q} is defined as

{Q} =

∫ +1

−1

[N(η)]T τs|J(η)|dη (6.3.22)

Substituting Eqs. (6.3.18), (6.3.19), and (6.3.21) into Eq. (6.3.12) leads to

{u∗(ξ)}T [E0]{u(ξ)},ξ −{u∗(ξ)}T{Q} −
∫ ∞

0

({u∗(ξ)}T [E0]{u(ξ)},ξξ

− {u∗(ξ)}T [E2]{u(ξ)} − {u∗(ξ)}T [M0]{ü}) dξ = 0 (6.3.23)

Equation (6.3.23) is satisfied when

{u∗(ξ)}T [E0]{u(ξ)},ξ −{u∗(ξ)}T{Q} = 0 (6.3.24)

and the integrand of the integral over ξ becomes zero,

{u∗(ξ)}T ([E0]{u(ξ)},ξξ −[E2]{u(ξ)} − [M0]{ü}) = 0 (6.3.25)

Rearranging Eq. (6.3.24) and eliminating all the terms {u∗(ξ)}T lead to

{Q} = [E0]{u(ξ)},ξ (6.3.26)

in the time domain, which is equivalent to

{Q} = [E0]{U(ξ)},ξ (6.3.27)

in the frequency domain, where {U(ξ)} denotes the nodal displacement amplitudes.
Similarly, eliminating all the terms {u∗(ξ)}T in Eq. (6.3.25) leads to the scaled
boundary finite element equation in displacement formulated in the time domain,

[E0]{u(ξ)},ξξ −[E2]{u(ξ)} − [M0]{ü} = 0 (6.3.28)
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The scaled boundary finite element equation in displacement formulated in the fre-
quency domain is obtained from the Fourier transform of Eq. (6.3.28) as

[E0]{U(ξ)},ξξ −[E2]{U(ξ)} + ω2[M0]{U(ξ)} = 0 (6.3.29)

where ω is the excitation frequency. Note that the coefficient matrices of the semi-
infinite layered system at the vertical boundary ΓV are obtained from the assembly
of the coefficient matrices [E0], [E2] and [M0] of individual elements. To simplify
the nomenclature, the same symbols are used for the assembled coefficient matrices.

6.4 Dynamic stiffness matrix of semi-infinite lay-

ered systems

In the frequency domain, the excitation force-displacement relationship with the
corresponding displacements is expressed as

{R} = [S∞(ω)]{U(ξ)} (6.4.1)

where [S∞(ω)] is the dynamic stiffness matrix of the semi-infinite layered system,
and {R} the interaction forces that relates to the internal nodal force vector {Q}
by the following equation:

{R} = −{Q} (6.4.2)

Substituting Eq. (6.4.2) into Eq. (6.4.1) and using Eq. (6.3.27) yield

−[E0]{U(ξ)},ξ = [S∞(ω)]{U(ξ)} (6.4.3)

Taking the derivative of Eq. (6.4.3) with respect to ξ and rearranging the equation
result in

−[E0]{U(ξ)},ξξ −[S∞(ω)]{U(ξ)},ξ = 0 (6.4.4)

Combining Eq. (6.3.29) and Eq. (6.4.4) leads to

−[S∞(ω)]{U(ξ)},ξ −[E2]{U(ξ)} + ω2[M0]{U(ξ)} = 0 (6.4.5)
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Equation (6.4.3) is rearranged as

{U(ξ)},ξ = −[E0]−1[S∞(ω)]{U(ξ)} (6.4.6)

Substituting Eq. (6.4.6) back into Eq. (6.4.5) and eliminating all the terms {U(ξ)}
lead to the scaled boundary finite element equation in dynamic stiffness formulated
in the frequency domain,

[S∞(ω)][E0]−1[S∞(ω)] − [E2] + ω2[M0] = 0 (6.4.7)

Note that the matrix [M0] is not proportional to the matrix [E0] as the layers may
have different wave velocities.

A concise formulation results when the transformation based on the following
eigenvalue problem is introduced

[M0][Φ] = [E0][Φ]�Λ2 (6.4.8)

where �Λ2 and [Φ] denote the eigenvalues and eigenvectors, respectively. Since [E0]

and [M0] are positive definite, the eigenvectors are orthogonal. They are normalized
as

[Φ]T [E0][Φ] = [I] (6.4.9a)

[Φ]T [M0][Φ] = �Λ2 (6.4.9b)

Pre- and post-multiplying Eq. (6.4.7) by [Φ]T and [Φ], respectively and using Eq.
(6.4.9) result in

[s∞(ω)]2 − [e2] + ω2�Λ2 = 0 (6.4.10)

where

[s∞(ω)] = [Φ]T [S∞(ω)][Φ] (6.4.11)

[e2] = [Φ]T [E2][Φ] (6.4.12)

The solution for [s∞(ω)] can be determined directly from Eq. (6.4.10) by rearranging
the equation as

[s∞(ω)]2 = [e2] − ω2�Λ2 (6.4.13)
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Using the eigen-decomposition for the right-hand side of Eq. (6.4.13) results in

[e2] − ω2�Λ2 = [Ψ]�Ω[Ψ]−1 (6.4.14)

where �Ω is the eigenvalues which are real numbers, and [Ψ] the eigenvectors which
are orthogonal i.e. [Ψ]−1 = [Ψ]T as [e2] is real. Substituting Eq. (6.4.14) back into
Eq. (6.4.13) yields the solution for [s∞(ω)],

[s∞(ω)] = [Ψ]�Ω 1
2 [Ψ]−1 (6.4.15)

which is equivalent to the solution obtained from the scaled boundary finite element
equation in dynamic stiffness. Only the positive roots (positive real or imaginary
numbers) of the diagonal entries of �Ω are chosen to satisfy the radiation condition.

Although the scaled boundary finite element equation can be solved analytically,
the analytical solution leads to convolution integrals when being applied as open
boundary conditions in the time domain.

6.5 Doubly asymptotic continued fraction solution

for dynamic stiffness matrix

This section describes the solution of the scaled boundary finite element equation for
dynamic stiffness matrix (Eq. (6.4.10)). The solution is sought as a doubly asymp-
totic continued fraction solution. Two steps are involved in the solution procedure.
In the first step detailed in Section 6.5.1, a continued fraction solution is determined
at the high-frequency limit recursively. In each recursion, the coefficient matrices
of one term of the continued fractions is obtained, and an equation is established
for the residual. In the second step detailed in Section 6.5.2, a continued fraction
solution of the residual equation of the high-frequency solution is determined at
the low-frequency limit recursively. The doubly asymptotic solution is obtained by
joining the low-frequency solution to the last term of the high-frequency solution.

6.5.1 Continued fraction solution at high frequency

The continued fraction solution at the high-frequency limit (ω → ∞) is written as

[s∞(ω)] = (iω)[c∞] − [ψ(1)][y(1)(ω)]−1[ψ(1)]T (6.5.1a)

[y(i)(ω)] = (iω)[y
(i)
1 ] − [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T (i = 1, 2, ..., MH) (6.5.1b)
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where [c∞] and [y
(i)
1 ] are coefficient matrices to be determined recursively in the

solution procedure. The additional factor matrices [ψ(1)] and [ψ(i+1)] are introduced
in order to improve numerical stability of the solution. To maintain the symmetry
of the coefficient matrices of the open boundary (Eq. (6.6.16) in Section 6.6), the
factor matrices and the transposed factor matrices are used in the residual terms
[ψ(1)][y(1)(ω)]−1[ψ(1)]T and [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T . MH is the order of the con-
tinued fraction solution at high frequency.

The coefficient matrix [c∞] is determined by substituting Eq. (6.5.1a) into Eq.
(6.4.10). This leads to an equation of a power series of (iω), including the following
two terms:

(iω)2([c∞]2 − �Λ2) +
(−[e2] − (iω)([c∞][ψ(1)][y(1)(ω)]−1[ψ(1)]T

+ [ψ(1)][y(1)(ω)]−1[ψ(1)]T [c∞]) + [ψ(1)][y(1)(ω)]−1[ψ(1)]T

× [ψ(1)][y(1)(ω)]−1[ψ(1)]T
)

= 0 (6.5.2)

This equation is satisfied by setting all the two terms equal to zero. Thus the solution
for [c∞] that satisfies the radiation condition is obtained from the first term ((iω)2

term) by selecting the positive root of each element on the diagonal of �Λ2,

[c∞] = �Λ (6.5.3)

The last term of Eq. (6.5.2) is an equation of [y(1)(ω)]−1. After being pre- and post-
multiplied by [ψ(1)]−1[y(1)(ω)] and [y(1)(ω)][ψ(1)]−T , respectively, it is expressed as
the i = 1 case of

[a(i)] − (iω)([b
(i)
1 ][y(i)(ω)] + [y(i)(ω)][b

(i)
1 ]T ) + [y(i)(ω)][c(i)][y(i)(ω)] = 0 (6.5.4)

with the following coefficient matrices:

[a(1)] = [ψ(1)]T [ψ(1)] (6.5.5a)

[b
(1)
1 ] = [ψ(1)]T [c∞][ψ(1)]−T (6.5.5b)

[c(1)] = [ψ(1)]−1(−[e2])[ψ(1)]−T (6.5.5c)

The factor matrix [ψ(1)] is selected to improve the stability condition of [c(1)]. A
good choice is

[ψ(1)] = [L(1)] (6.5.6)
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where the lower triangular matrix [L(1)] is obtained from the following LDT T de-
composition:

−[e2] = [L(1)]�D(1)[L(1)]T (6.5.7)

[L(1)] is normalized such that the entries of the diagonal matrix �D(1)are ±1. By
using Eqs. (6.5.6) and (6.5.7), Eq. (6.5.5) is rewritten as

[a(1)] = [L(1)]T [L(1)] (6.5.8a)

[b
(1)
1 ] = [L(1)]T [c∞][L(1)]−T (6.5.8b)

[c(1)] = �D(1) (6.5.8c)

To begin the recursive procedure, Eq. (6.5.1b) is substituted into Eq. (6.5.4).
This also results in an equation of a power series of (iω) grouped into the following
two terms:

(iω)2([y
(i)
1 ][c(i)][y

(i)
1 ] − [y

(i)
1 ][b

(i)
1 ]T − [b

(i)
1 ][y

(i)
1 ]) +

(
[a(i)] − (iω)(−[b

(i)
1 ] + [y

(i)
1 ][c(i)])

× [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T − (iω)[ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T

× (−[b
(i)
1 ]T + [c(i)][y

(i)
1 ]) + [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T [c(i)]

× [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T
)

= 0 (6.5.9)

Equation (6.5.9) is also satisfied by setting all the two terms equal to zero. Pre- and
post-multiplying the first term ((iω)2 term) by [y

(i)
1 ]−1 yield the Lyapunov equation

of [y
(i)
1 ]−1,

[b
(i)
1 ]T [y

(i)
1 ]−1 + [y

(i)
1 ]−1[b

(i)
1 ] = [c(i)] (6.5.10)

which can be solved by the function “lyap” in MATLAB. [y
(i)
1 ] is obtained from the

inverse of the solution of Eq. (6.5.10). [y
(i)
1 ] is symmetric as well as [b

(i)
1 ] and [c(i)].

The last term in Eq. (6.5.9) is an equation of [y(i+1)(ω)]−1. Pre- and post-
multiplying the last term by [y(i+1)(ω)][ψ(i+1)]−1 and [ψ(i+1)]−T [y(i+1)(ω)], respec-
tively yield the residual equation,

[a(i+1)] − (iω)([b
(i+1)
1 ][y(i+1)(ω)] + [y(i+1)(ω)][b

(i+1)
1 ]T )

+ [y(i+1)(ω)][c(i+1)][y(i+1)(ω)] = 0 (6.5.11)
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with the coefficient matrices

[a(i+1)] = [ψ(i+1)]T [c(i)][ψ(i+1)] (6.5.12a)

[b
(i+1)
1 ] = [ψ(i+1)]T (−[b

(i)
1 ]T + [c(i)][y

(i)
1 ])[ψ(i+1)]−T (6.5.12b)

[c(i+1)] = [ψ(i+1)]−1[a(i)][ψ(i+1)]−T = �D(i+1) (6.5.12c)

The factor matrix [ψ(i+1)] is set equal to

[ψ(i+1)] = [L(i+1)] (6.5.13)

where the diagonal matrix �D(i+1) and the lower triangular matrix [L(i+1)] are
obtained from the following LDT T decomposition:

[a(i)] = [L(i+1)]�D(i+1)[L(i+1)]T (6.5.14)

[L(i+1)] is normalized such that the entries of the diagonal matrix �D(i+1)are ±1.
The continued fraction solution is determined recursively using Eq. (6.5.10) where
the coefficient matrices [a(1)], [b

(1)
1 ] and [c(1)] are initialized by Eq. (6.5.8) and updated

during the recursion with Eq. (6.5.12).
After an order MH continued fraction solution is obtained at the high-frequency

limit, the residual satisfies Eq. (6.5.11) with i = MH .

6.5.2 Continued fraction solution at low frequency

The residual equation (Eq. (6.5.11)) of the high-frequency continued fraction solution
is solved again by a continued fraction but at the low frequency limit (ω → 0). For
simplicity in notation, the residual is expressed as

[yL(ω)] = [y(MH+1)(ω)] (6.5.15)

and Eq. (6.5.11) is rewritten as

[aL] − (iω)([bL1][yL(ω)] + [yL(ω)][bL1]
T ) + [yL(ω)][cL][yL(ω)] = 0 (6.5.16)

with the following coefficient matrices used at the low-frequency limit:

[aL] = [a(MH+1)] = [ψ
(0)
L ]T [c(MH)][ψ

(0)
L ] (6.5.17a)

[bL1] = [b
(MH+1)
1 ] = [ψ

(0)
L ]T (−[b

(MH)
1 ]T + [c(MH)][y

(MH)
1 ])[ψ

(0)
L ]−T (6.5.17b)

[cL] = [c(MH+1)] = [ψ
(0)
L ]−1[a(MH)][ψ

(0)
L ]−T = �D(0)

L  (6.5.17c)
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where

[ψ
(0)
L ] = [ψ(MH+1)] (6.5.18a)

�D(0)
L  = �D(MH+1) (6.5.18b)

The continued fraction solution at the low-frequency limit is expressed as

[yL(ω)] = [y
(0)
L0 ] + (iω)[y

(0)
L1 ] − (iω)2[ψ

(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T (6.5.19a)

[y
(i)
L (ω)] = [y

(i)
L0] + (iω)[y

(i)
L1] − (iω)2[ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T (i = 1, 2, ..., ML)

(6.5.19b)

where [y
(0)
L0 ], [y

(0)
L1 ], [y

(i)
L0] and [y

(i)
L1] are coefficient matrices to be determined recur-

sively. The factor matrices [ψ
(1)
L ] and [ψ

(i+1)
L ] are introduced to improve numerical

stability of the solution. (iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T and (iω)2[ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

are residual terms. ML is the order of the continued fraction solution at low fre-
quency.

Substituting Eq. (6.5.19a) into Eq. (6.5.16) leads to an equation of a power series
of (iω),

([aL] + [y
(0)
L0 ][cL][y

(0)
L0 ]) + (iω)(−[bL1][y

(0)
L0 ] − [y

(0)
L0 ][bL1]

T + [y
(0)
L0 ][cL][y

(0)
L1 ]

+ [y
(0)
L1 ][cL][y

(0)
L0 ]) + (iω)2

(
(−[bL1][y

(0)
L1 ] − [y

(0)
L1 ][bL1]

T + [y
(0)
L1 ][cL][y

(0)
L1 ])

−
(
[y

(0)
L0 ][cL] + (iω)(−[bL1] + [y

(0)
L1 ][cL])

)
[ψ

(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

− [ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

(
[cL][y

(0)
L0 ] + (iω)(−[bL1]

T + [cL][y
(0)
L1 ])
)

+(iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T [cL][ψ

(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

)
= 0 (6.5.20)

Similarly, this equation is satisfied by setting each of the three terms equal to
zero. [y

(0)
L0 ] can also be determined from the static stiffness matrix [s∞(ω = 0)].

Substituting Eqs. (6.5.15), (6.5.18a) and (6.5.19a) into Eq. (6.5.1) results in

[s∞(ω)] =(iω)[c∞] − [ψ(1)]((iω)[y
(1)
1 ] − [ψ(2)]((iω)[y

(2)
1 ] − . . .

− [ψ(MH)]((iω)[y
(MH)
1 ] − [ψ

(0)
L ]([y

(0)
L0 ] + (iω)[y

(0)
L1 ]

− (iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T )−1[ψ

(0)
L ]T )−1[ψ(MH)]T

. . . )−1[ψ(2)]T )−1[ψ(1)]T (6.5.21)
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Setting ω equal to zero and rearranging Eq. (6.5.21) reversely yield the solution for
[y

(0)
L0 ],

[y
(0)
L0 ] =

{
[s∞(ω = 0)] when MH is odd number
−[s∞(ω = 0)]−1 when MH is even number

(6.5.22)

[s∞(ω = 0)] can be determined from Eq. (6.4.13) by setting ω equal to zero

[s∞(ω = 0)] = [e2]
1
2 (6.5.23)

Only the positive roots are chosen to obtain the positive-definite matrix for [s∞(ω =

0)]. [y
(0)
L0 ] is symmetric as well as [s∞(ω = 0)]. Setting the second term ((iω) term)

in Eq. (6.5.20) leads to the Lyapunov equation of [y
(0)
L1 ],

([y
(0)
L0 ][cL])[y

(0)
L1 ] + [y

(0)
L1 ]([cL][y

(0)
L0 ]) = [bL1][y

(0)
L0 ] + [y

(0)
L0 ][bL1]

T (6.5.24)

which can be solved by the function “lyap” in MATLAB. [y
(0)
L1 ] is symmetric as well

as [cL] and [y
(0)
L0 ].

The last term ((iω)2 term) in Eq. (6.5.20) is an equation of [y
(1)
L (ω)]−1. Pre- and

post-multiplying the last term by [y
(1)
L (ω)][ψ

(1)
L ]−1 and [ψ

(1)
L ]−T [y

(1)
L (ω)], respectively

result in an equation of [y
(i)
L (ω)]. It is expressed as the i = 1 case of

(iω)2[a
(i)
L ] − ([b

(i)
L0] + (iω)[b

(i)
L1])[y

(i)
L (ω)] − [y

(i)
L (ω)]([b

(i)
L0]

T + (iω)[b
(i)
L1]

T )

+ [y
(i)
L (ω)][c

(i)
L ][y

(i)
L (ω)] = 0 (6.5.25)

with the following coefficient matrices:

[a
(1)
L ] = [ψ

(1)
L ]T [cL][ψ

(1)
L ] (6.5.26a)

[b
(1)
L0 ] = [ψ

(1)
L ]T [cL][y

(0)
L0 ][ψ

(1)
L ]−T (6.5.26b)

[b
(1)
L1 ] = [ψ

(1)
L ]T (−[bL1]

T + [cL][y
(0)
L1 ])[ψ

(1)
L ]−T (6.5.26c)

[c
(1)
L ] = [ψ

(1)
L ]−1(−[bL1][y

(0)
L1 ] − [y

(0)
L1 ][bL1]

T + [y
(0)
L1 ][cL][y

(0)
L1 ])[ψ

(1)
L ]−T = �D(1)

L 
(6.5.26d)

The factor matrix [ψ
(1)
L ] is set equal to

[ψ
(1)
L ] = [L

(1)
L ] (6.5.27)
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where the diagonal matrix �D(1)
L  and the lower triangular matrix [L

(1)
L ] are obtained

from the following LDT T decomposition:

−[bL1][y
(0)
L1 ] − [y

(0)
L1 ][bL1]

T + [y
(0)
L1 ][cL][y

(0)
L1 ] = [L

(1)
L ]�D(1)

L [L(1)
L ]T (6.5.28)

[L
(1)
L ] is normalized such that the entries of the diagonal matrix �D(1)

L are ±1. Sub-
stituting the recursive equation of the low-frequency limit (Eq. (6.5.19b)) into Eq.
(6.5.25) and rearranging the equation lead to an equation of a power series of (iω),

(−[b
(i)
L0][y

(i)
L0] − [y

(i)
L0][b

(i)
L0]

T + [y
(i)
L0][c

(i)
L ][y

(i)
L0]) + (iω)

(
(−[b

(i)
L0] + [y

(i)
L0][c

(i)
L ])[y

(i)
L1]

+ [y
(i)
L1](−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0]) − [b

(i)
L1][y

(i)
L0] − [y

(i)
L0][b

(i)
L1]

T
)

+ (iω)2
(
([a

(i)
L ]

− [b
(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1]) −

(
(−[b

(i)
L0] + [y

(i)
L0][c

(i)
L ])

+ (iω)(−[b
(i)
L1] + [y

(i)
L1][c

(i)
L ])
)

[ψ
(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

− [ψ
(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

(
(−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0])

+ (iω)(−[b
(i)
L1]

T + [c
(i)
L ][y

(i)
L1])
)

+ (iω)2[ψ
(i+1)
L ][y

(i+1)
L (ω)]−1

× [ψ
(i+1)
L ]T [c

(i)
L ][ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

)
= 0 (6.5.29)

This equation is satisfied by setting each term equal to zero. Pre- and post-
multiplying the first term (the constant term independent of (iω)) by [y

(i)
L0]

−1 lead
to the Lyapunov equation of [y

(i)
L0]

−1,

[b
(i)
L0]

T [y
(i)
L0]

−1 + [y
(i)
L0]

−1[b
(i)
L0] − [c

(i)
L ] = 0 (6.5.30)

which can be solved by the function “lyap” in MATLAB. [y
(i)
L0] is obtained from the

inverse of the solution of Eq. (6.5.30). It is symmetric as well as [c
(i)
L ]. The second

term ((iω) term) in Eq. (6.5.29) is the Lyapunov equation of [y
(i)
L1],

(−[b
(i)
L0] + [y

(i)
L0][c

(i)
L ])[y

(i)
L1] + [y

(i)
L1](−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0]) = [b

(i)
L1][y

(i)
L0] + [y

(i)
L0][b

(i)
L1]

T

(6.5.31)

which can be solved by the function “lyap” in MATLAB. [y
(i)
L1] is symmetric as well

as [y
(i)
L0].

The last term in Eq. (6.5.29) is an equation of [y
(i+1)
L (ω)]−1. Pre- and post-

multiplying the last term by [y
(i+1)
L (ω)][ψ

(i+1)
L ]−1 and [ψ

(i+1)
L ]−T [y

(i+1)
L (ω)], respec-
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tively lead to an equation in the same form as Eq. (6.5.25)

(iω)2[a
(i+1)
L ] − ([b

(i+1)
L0 ] + (iω)[b

(i+1)
L1 ])[y

(i+1)
L (ω)] − [y

(i+1)
L (ω)]([b

(i+1)
L0 ]T

+ (iω)[b
(i+1)
L1 ]T ) + [y

(i+1)
L (ω)][c

(i+1)
L ][y

(i+1)
L (ω)] = 0 (6.5.32)

with the coefficient matrices updated recursively by

[a
(i+1)
L ] = [ψ

(i+1)
L ]T [c

(i)
L ][ψ

(i+1)
L ] (6.5.33a)

[b
(i+1)
L0 ] = [ψ

(i+1)
L ]T (−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0])[ψ

(i+1)
L ]−T (6.5.33b)

[b
(i+1)
L1 ] = [ψ

(i+1)
L ]T (−[b

(i)
L1]

T + [c
(i)
L ][y

(i)
L1])[ψ

(i+1)
L ]−T (6.5.33c)

[c
(i+1)
L ] = [ψ

(i+1)
L ]−1([a

(i)
L ] − [b

(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1])[ψ

(i+1)
L ]−T

= �D(i+1)
L  (6.5.33d)

The factor matrix [ψ
(i+1)
L ] is set equal to

[ψ
(i+1)
L ] = [L

(i+1)
L ] (6.5.34)

where the diagonal matrix �D(i+1)
L  and the lower triangular matrix [L

(i+1)
L ] are

obtained from the following LDT T decomposition:

[a
(i)
L ] − [b

(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1] = [L

(i+1)
L ]�D(i+1)

L [L(i+1)
L ]T (6.5.35)

[L
(i+1)
L ] is normalized such that the entries of the diagonal matrix �D(i+1)

L are ±1.
The continued fraction solution at low frequency is evaluated by using Eqs.

(6.5.30) and (6.5.31) whereby the recursive coefficient matrices are initialized by Eq.
(6.5.26) and updated by Eq. (6.5.33). The doubly asymptotic continued fraction
solution is determined by combining the high-frequency continued fraction solution
in Eq. (6.5.1) with the low-frequency continued fraction solution in Eq. (6.5.19)
using [y(MH+1)(ω)] = [yL(ω)] (Eq. (6.5.15)). It is expressed as

[s∞(ω)] =(iω)[c∞] − [ψ(1)]((iω)[y
(1)
1 ] − [ψ(2)]((iω)[y

(2)
1 ] − . . .

− [ψ(MH)]−T ((iω)[y
(MH)
1 ] − [ψ

(0)
L ]([y

(0)
L0 ] + (iω)[y

(0)
L1 ]

− (iω)2[ψ
(1)
L ]([y

(1)
L0 ] + (iω)[y

(1)
L1 ] − . . . − (iω)2[ψ

(ML)
L ]([y

(ML)
L0 ]

+ (iω)[y
(ML)
L1 ])−1[ψ

(ML)
L ]T . . . )−1[ψ

(1)
L ]T )−1[ψ

(0)
L ]T )−1[ψ(MH)]T

. . .)−1[ψ(2)]T )−1[ψ(1)]T (6.5.36)

Note that the residual term (iω)2[ψ
(ML+1)
L ][y

(ML+1)
L (ω)]−1[ψ

(ML+1)
L ]T at the low-frequency

limit is neglected.
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6.6 Doubly asymptotic open boundary condition

The procedure of constructing the high-order doubly asymptotic open boundary
condition described in this section is based on the one described in Chapter 3.
The vertical boundary (ξ = 0) is considered. With use of Eq. (6.4.11), Eq. (6.4.1)
mentioned previously in Section 6.4 can be transformed into Eq. (6.6.1),

{R̃} = [s∞(ω)]{Ũ} (6.6.1)

which depends on the excitation frequency ω, where

{R̃} = [Φ]T{R} (6.6.2a)

{Ũ} = [Φ]−1{U} (6.6.2b)

where {U} denotes {U(ξ = 0)}. Substituting Eq. (6.5.1a) into Eq. (6.6.1) leads to

{R̃} = (iω)[c∞]{Ũ} − [ψ(1)]{Ũ (1)} (6.6.3)

where the auxiliary variable {Ũ (1)} is defined as

{Ũ (1)} = [y(1)(ω)]−1[ψ(1)]T{Ũ} (6.6.4)

and then reformulated as

[ψ(1)]T{Ũ} = [y(1)(ω)]{Ũ (1)} (6.6.5)

which is the same form as Eq. (6.6.1). Similarly, an auxiliary variable is introduced
for each term of the continued fraction in Eq. (6.5.1b). This yields

[ψ(i+1)]T{Ũ (i)} = [y(i+1)(ω)]{Ũ (i+1)} (i = 0, 1, 2, ..., MH) (6.6.6)

where Eq. (6.6.5) is included as the i = 0 case with {Ũ (0)} = {Ũ}. Multiplying Eq.
(6.5.1b) by {Ũ (i)} and using the definition of auxiliary variables in Eq. (6.6.6) with
i − 1 and i result in

[ψ(i)]T{Ũ (i−1)} = (iω)[y
(i)
1 ]{Ũ (i)} − [ψ(i+1)]{Ũ (i+1)} (i = 1, 2, ..., MH) (6.6.7)
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The residual {Ũ (MH+1)} of an order MH high-frequency continued fraction solution
is expressed in Eq. (6.6.6) with i = MH as

[ψ(MH)]T{Ũ (MH)} = [y(MH+1)(ω)]{Ũ (MH+1)} (6.6.8)

[y(MH+1)(ω)] = [yL(ω)] (Eq. (6.5.15)) is expressed in Eq. (6.5.19a) as a low-frequency
continued fraction solution. Multiplying Eq. (6.5.19a) by {Ũ (MH+1)} and using Eqs.
(6.5.15) and (6.6.8) lead to

[ψ
(0)
L ]T{Ũ (MH)} = [y

(0)
L0 ]{Ũ (MH+1)} + (iω)[y

(0)
L1 ]{Ũ (MH+1)} − (iω)[ψ

(1)
L ]{Ũ (1)

L } (6.6.9)

where the auxiliary variable {Ũ (1)
L } is defined in

(iω)[ψ
(1)
L ]T{Ũ (MH+1)} = [y

(1)
L (ω)]{Ũ (1)

L } (6.6.10)

Again, an auxiliary variable is introduced for each term of the continued fraction in
Eq. (6.5.19b). This results in

(iω)[ψ
(i+1)
L ]T{Ũ (i)

L } = [y
(i+1)
L (ω)]{Ũ (i+1)

L } (i = 0, 1, 2, ..., ML) (6.6.11)

with {Ũ (0)
L } = {Ũ (MH+1)}. Multiplying Eq. (6.5.19b) by {Ũ (i)

L } and using the defi-
nition of auxiliary variables in Eq. (6.6.11) with i − 1 and i result in

(iω)[ψ
(i)
L ]T{Ũ (i−1)

L } =[y
(i)
L0]{Ũ (i)

L } + (iω)[y
(i)
L1]{Ũ (i)

L }
− (iω)[ψ

(i+1)
L ]{Ũ (i+1)

L } (i = 1, 2, ..., ML) (6.6.12)

For the low-frequency solution with i = ML, the approximation {Ũ (ML+1)
L } = 0 is

introduced. Substituting Eqs. (6.6.2a) and (6.6.2b) back into Eq. (6.6.1) results in

{R} = (iω)[Φ]−T [c∞][Φ]−1{U} − [Φ]−T [ψ(1)]{Ũ (1)} (6.6.13)

Assembling Eqs. (6.6.13), (6.6.7), (6.6.9) and (6.6.12) leads to a system of linear
equations,

([Kh] + (iω)[Ch]){Z} = {F} (6.6.14)

where {Z} contains the displacement amplitudes on the vertical boundary ΓV and
the auxiliary variables, {F} is the amplitudes of the excitation forces applied on the
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vertical boundary ΓV ,

{Z} = [{U}, {Ũ (1)}, ..., {Ũ (MH)}, {Ũ (0)
L }, {Ũ (1)

L }, ..., {Ũ (ML)
L }]T (6.6.15a)

{F} = [{R}, 0, ..., 0, 0, 0, ..., 0]T (6.6.15b)

[Kh] is the stiffness matrix and [Ch] is the damping matrix

[Kh] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −[Φ]−T [ψ(1)]
−[ψ(1)]T [Φ]−1 0 −[ψ(2)]

−[ψ(2)]T
. . . . . .
. . . 0 −[ψ(0)

L ]
−[ψ(0)

L ]T [y(0)
L0 ] 0

0 [y(1)
L0 ]

. . .
. . . . . . 0

0 [y(ML)
L0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.6.16a)

[Ch] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Φ]−T [c∞][Φ]−1 0
0 [y(1)

1 ] 0

0
. . . . . .
. . . [y(MH)

1 ] 0
0 [y(0)

L1 ] −[ψ(1)
L ]

−[ψ(1)
L ]T [y(1)

L1 ]
. . .

. . . . . . −[ψ(ML)
L ]

−[ψ(ML)
L ]T [y(ML)

L1 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.6.16b)

Both matrices are banded, symmetric and independent of time.
Equation (6.6.14) represents the high-order doubly asymptotic open boundary

condition in the frequency domain. It is expressed in the time domain as a system
of first-order ordinary differential equations,

[Kh]{z(t)} + [Ch]{ż(t)} = {f(t)} (6.6.17)

with

{z(t)} = [{u(t)}, {ũ(1)(t)}, ..., {ũ(MH)(t)}, {ũ(0)
L }, {ũ(1)

L (t)}, ..., {ũ(ML)
L (t)}]T

(6.6.18a)

{f(t)} = [{r(t)}, 0, ..., 0, 0, 0, ..., 0]T (6.6.18b)
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Equation (6.6.17) represents the high-order doubly asymptotic open boundary con-
dition. It is temporally local. When the low-frequency terms are neglected, it
becomes a high-order singly asymptotic boundary condition.

6.7 Numerical examples

In this section, three layered systems with different material constants are analyzed
in the frequency and time domains. The first one that is a single layer is analyzed in
Section 6.7.1. The second one that is a semi-infinite two-layered system is analyzed
in Section 6.7.2. The third one that is a semi-infinite three-layered system is analyzed
in Section 6.7.3.

When evaluating the accuracy of the continued fraction solutions, the equivalent
dynamic stiffness coefficient expressed in Eq. (A.3.1) in Appendix A is computed.
The equivalent dynamic stiffness coefficients are normalized by the shear modulus
G and plotted with respect to the dimensionless frequency a0, which is defined as

a0 =
ωh

cs

(6.7.1)

The solution in Eq. (6.4.15) serves as the reference solution.
In the time-domain analysis, the Newmark’s method with γ = 0.5 and β = 0.25

(average acceleration scheme) is adopted to integrate Eq. (6.6.17) (see Section A.2
in Appendix A). An extended finite element mesh is analyzed by using ABAQUS,
a commercial finite element package, to provide a reference solution to verify the
high-order singly and doubly asymptotic open boundaries. Eight-node isoparametric
quadrilateral element (Q8) is selected for the extended mesh method.

Based on the highest frequency of interest ωh, the wave period T = 2π/ωh and
the minimum wavelength λw = csT of each sublayer are calculated. The SBFEM
and FEM meshes are divided in such a way that 1 wavelength is represented by at
lease 13 nodes. The size of the time step Δt is chosen as 1/12 of the shortest period.

6.7.1 Semi-infinite layer

The first layered system is of one layer with depth h as illustrated in Fig. 6.7.1(a).
The ratio of the material constants used in the analysis is G/ρ = 1.
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Figure 6.7.1: Semi-infinite layer: (a) geometry, (b) SBFE mesh and (c) FE mesh

The present open boundary based on the SBFEM is formulated directly on the
the vertical boundary ΓV of the layer. The boundary is discretized with 12 two-node
elements in the SBFEM as shown in Fig. 6.7.1(b).

The singly asymptotic continued fraction solution at high frequency is investi-
gated at first. The results of equivalent dynamic stiffness coefficients obtained from
the orders MH = 5 and MH = 9 are plotted as the real parts in Fig. 6.7.2(a) and
the imaginary parts in Fig. 6.7.2(b). They differ considerably from those of the
reference solution. The real parts of the singly asymptotic solution are always equal
to zero. The imaginary parts oscillate strongly, especially below the first cut-off
frequency a0 < π/2. This example indicates that the singly asymptotic continued
fraction solution cannot model evanescent waves below cut-off frequencies.
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Figure 6.7.2: Equivalent dynamic stiffness coefficient of semi-infinite layer by singly
asymptotic continued fraction solution: (a) real part and (b) imaginary
part

The doubly asymptotic continued fraction solution are then investigated. The
equivalent dynamic stiffness coefficients obtained from the orders MH = ML = 2 and
MH = ML = 4 are plotted in Fig. 6.7.3. Both the real part and the imaginary part of
the result obtained at the order MH = ML = 2 agree well with those of the reference
solution. This indicates that the doubly asymptotic continued fraction solution can
model the evanescent waves below the cut-off frequencies. When the order increases
to MH = ML = 4, the accuracy of the result also increases. This shows that the
doubly asymptotic continued fraction solution converges to the reference solution
with increasing orders.
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Figure 6.7.3: Equivalent dynamic stiffness coefficient of semi-infinite layer by doubly
asymptotic continued fraction solution: (a) real part and (b) imaginary
part

The transient response of the semi-infinite layer to a uniformly distributed surface
traction p(t) on the vertical boundary ΓV as shown in Fig. 6.7.1 is evaluated. The
time-dependence of the surface traction p(t) is prescribed as a triangular function
as plotted in Fig. 6.7.4(a) with respect to the dimensionless time t̄ = tcs/h. The
maximum surface traction is denoted as PT . The Fourier transform of the triangular
function is also plotted in Fig. 6.7.4(b) with respect to the dimensionless frequency
a0. The highest dimensionless frequency of interest ah is observed as 6.
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Figure 6.7.4: Triangular function: (a) time history and (b) Fourier transform

To obtain a reference solution, an extended finite element mesh as shown in Fig.
6.7.1(c) is analyzed. The number of nodes on the vertical boundary ΓV is the same
as that of the SBFEM. The length of the extended mesh is chosen as 50h so that
responses are not affected by the waves reflected at the truncated boundary. The
totals number of nodes in the extended finite element mesh is 6, 013 while the scaled
boundary finite element mesh has only 13 nodes. The dimensionless time step Δt̄

of 0.05 is chosen for both the extended mesh and the open boundaries.
The displacement responses at Point A located at the top of the vertical boundary

ΓV (Fig. 6.7.1(a)) is chosen to evaluate the accuracy of the open boundaries. The
results obtained from the order MH = 5 and MH = 9 singly asymptotic open
boundary are non-dimensionlized and plotted with respect to the dimensionless time
t̄ as shown in Fig. 6.7.5(a). At the order MH = 5, the result is accurate at the
early time (0 < t̄ < 3), but exhibits “fictitious reflection” at the late time (t̄ > 3).
At the order MH = 9, the result becomes more accurate but only at the early
time. Moreover, “fictitious reflection” still occurs at the late time. These “fictitious
reflections” are similar to those in Chapter 3. This example shows that the singly
asymptotic open boundary, which is closely related to several high-order absorbing
boundaries, cannot transmit evanescent waves below cut-off frequencies. Therefore,
this open boundary is unsuitable for a long-time analysis.

Compared to the singly asymptotic open boundary, the doubly asymptotic open
boundary at the orders MH = ML = 2 and MH = ML = 4 yield more accurate
results as shown in Fig. 6.7.5(b). With merely MH = ML = 2, the displacement
response agrees very well with that of the extended mesh method. No “fictitious
reflection” is observed. In addition, the accuracy of the result at the late time
increases as the order increases to MH = ML = 4. By comparing Figs. 6.7.5(a)

204



and 6.7.5(b), the doubly asymptotic open boundary is much more accurate than the
singly asymptotic open boundary with the same number of terms.
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Figure 6.7.5: Displacement responses of semi-infinite layer at Point A to surface
traction p(t): (a) by singly asymptotic open boundary and (b) by
doubly asymptotic open boundary

6.7.2 Semi-infinite two-layered system

A two-layered system is illustrated in Fig. 6.7.6(a). The depth of each sublayer is
h/2. The ratios of the material constants are G2/G1 = 5, G1/ρ1 = 1 and ρ2/ρ1 = 1.
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Figure 6.7.6: Semi-infinite two-layered system: (a) geometry, (b) SBFE mesh and
(c) FE mesh

In mesh modeling, the meshes of the singly and doubly asymptotic open bound-
aries are identical and modeled by the SBFEM with 8 two-node elements. Only the
vertical boundary ΓV of the layered system is discretized as shown in Fig. 6.7.6(b).

The equivalent dynamic stiffness coefficients obtained from the order MH = 7

and MH = 13 singly asymptotic continued fraction solution at high frequency are
plotted in Fig. 6.7.7. Neither the real parts nor the imaginary parts agree with those
of the reference solution. Again, the real parts are always zero, and the imaginary
parts exhibit strong oscillations. The accuracy is even worse than the case of the
singly layered system (Section 6.7.1). Thus the singly asymptotic continued fraction
solution cannot model evanescent waves below cut-off frequencies.
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Figure 6.7.7: Equivalent dynamic stiffness coefficient of semi-infinite two-layered
system by singly asymptotic continued fraction solution: (a) real part
and (b) imaginary part

In contrast, the doubly asymptotic continued fraction solution with the same
numbers of terms i.e. using MH = ML = 3 and MH = ML = 6 performs better.
The real and imaginary parts of the results as plotted in Fig. 6.7.8 together with
those of the reference solution. With the order MH = ML = 6, the accuracy of
the result increases, and the real and imaginary parts around a0 = 2.5 converge to
those of the reference solution. Therefore, the doubly asymptotic continued fraction
solution can model evanescent waves below the cut-off frequencies. It is noticed that
a higher order of continued fraction is required by the two-layered system than by
the singly layered system.
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Figure 6.7.8: Equivalent dynamic stiffness coefficient of semi-infinite two-layered
system by doubly asymptotic continued fraction solution: (a) real part
and (b) imaginary part

The transient response of the layered system is investigated. The same uniform
surface traction p(t) as in Section 6.7.1 is applied to the vertical boundary ΓV . The
time history of p(t) is shown in Fig. 6.7.4(a). A reference solution is obtained from
an extended mesh (Fig. 6.7.6(c)). The number of nodes on the vertical boundary
ΓV is the same as that of the SBFEM. The length of the extended mesh is chosen
as 50h. The total number of nodes in the mesh is 4, 006 which is about 445 times
the total number of nodes of the SBFEM. The size of the dimensionless time step
is chosen as Δt̄ = 0.05.

The displacement responses at Point A obtained by using the order MH = 7

and MH = 13 singly asymptotic boundary are plotted in Fig. 6.7.9(a). At the very
early time (0 < t̄ < 1.5 for MH = 7 and 0 < t̄ < 3 for MH = 13), the results
agree well with those of the extended mesh method. However, at the late time
significant “fictitious reflections” occur. The improvement by increasing the order of
the boundary condition is marginal.

In contrast, the doubly asymptotic open boundary with the same numbers of
terms performs excellently. The results obtained from the orders MH = ML = 3

and MH = ML = 6 are plotted in Fig. 6.7.9(b). All the results correspond to those
of the extended mesh method, and no “fictitious reflection” is observed throughout
the whole duration. The accuracy of the result at the late time increases when the
order increases to MH = ML = 6. Thus the doubly asymptotic open boundary is
more suitable for a long-time analysis of this layered system.
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Figure 6.7.9: Displacement responses of semi-infinite two-layered system at Point A
to surface traction p(t): (a) by singly asymptotic open boundary and
(b) by doubly asymptotic open boundary

6.7.3 Semi-infinite three-layered system

A three layered system with the depth of each sublayer equal to h/3, is illustrated
in Fig. 6.7.10(a). The ratios of the material constants used in the analysis are
G3/G1 = 3/5, G2/G1 = 1/5, G1/ρ1 = 5 and ρ3/ρ1 = ρ2/ρ1 = 1.
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Figure 6.7.10: Semi-infinite three-layered system: (a) geometry, (b) SBFE mesh and
(c) FE mesh

The doubly and singly asymptotic open boundaries are applied directly on the
vertical boundary ΓV of the layered system. Only the vertical boundary ΓV is
discretized in the SBFEM with 12 two-node elements as shown in Fig. 6.7.10(b).

The equivalent dynamic stiffness coefficients are evaluated. The results obtained
with the singly asymptotic continued fraction solution at the orders MH = 9 and
MH = 17 are plotted in Fig. 6.7.11. Significant difference with the reference solution
is observed.
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Figure 6.7.11: Equivalent dynamic stiffness coefficient of semi-infinite three-layered
system by singly asymptotic continued fraction solution: (a) real part
and (b) imaginary part

The equivalent dynamic stiffness coefficient obtained from the doubly asymptotic
continued fraction at the order MH = ML = 4 is shown in Fig. 6.7.12. Both the real
and imaginary parts agree well with those of the reference solution at low frequencies
(0 < a0 < 1) and high frequencies (a0 > 2). The accuracy in the intermediate
frequency range improves when the order is increased to MH = ML = 8.

(a)

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

0 1 2 3 4 5 6

R
EA

L
(S

(a
0)

)/
G

1

DIMENSIONLESS FREQUENCY a0 = ωh/cs1

MH = ML = 8
MH = ML = 4
REFERENCE

211



(b)

-0.9

0.0

0.9

1.8

2.7

3.6

4.5

0 1 2 3 4 5 6
IM

A
G

(S
(a

0)
)/

G
1

DIMENSIONLESS FREQUENCY a0 = ωh/cs1

MH = ML = 8
MH = ML = 4
REFERENCE

Figure 6.7.12: Equivalent dynamic stiffness coefficient of semi-infinite three-layered
system by doubly asymptotic continued fraction solution: (a) real
part and (b) imaginary part

The response of the layered system to a uniformly distributed surface traction
τ0(t) applied on the vertical boundary ΓV is computed. The time history of τ0(t)

is prescribed as a function of Ricker wavelet with t̄s = 10 and t̄0 = 2.2 (see Eqs.
(A.1.1) and (A.1.2) in Appendix A). The time history is plotted in Fig. 6.7.13(a)
of which Fourier transform is shown in Fig. 6.7.13(b). The highest dimensionless
frequency of interest ah is observed as 3.
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Figure 6.7.13: Ricker wavelet function: (a) time history and (b) Fourier transform

Again, an extended finite element mesh (Fig. 6.7.10(c)) is analyzed. The number
of nodes on the vertical boundary ΓV is the same as that in the mesh of the SBFEM.
The total number of nodes in the mesh is 5, 863 which is about 451 times the total
number of nodes generated by the SBFEM. The dimensionless time step Δt̄ = 0.05

is chosen.
The singly asymptotic open boundary is investigated first. The displacement

responses at Point A obtained at the orders MH = 9 and MH = 17 are plotted in
Fig. 6.7.14(a). Again, the results are only accurate at the early time. Significant
“fictitious reflections” are observed at the late time.

The doubly asymptotic open boundary with the same numbers of terms is ap-
plied. The results are much more accurate as plotted in Fig. 6.7.14(b). The result
obtained from using the order MH = ML = 4 does not exhibit any “fictitious re-
flection” throughout the entire duration. The accuracy of the result at the late
time increases when the order is increased to MH = ML = 8. The result is almost
the same as that of the extended mesh method, and no “fictitious reflection” occurs.
Thus the doubly asymptotic open boundary is more suitable for a long-time analysis
of this layered system.

213



(a)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 5 10 15 20 25 30 35 40
D

IS
PL

A
C

EM
EN

T
u(

t̄)G
1/

A R

DIMENSIONLESS TIME t̄ = tcs1/h

MH = 17
MH = 9
EXTENDED MESH

(b)

-0.18

-0.09

0.00

0.09

0.18

0.27

0.36

0 5 10 15 20 25 30 35 40

D
IS

PL
A

C
EM

EN
T

u(
t)G

1/
A R

DIMENSIONLESS TIME t̄ = tcs1/h

MH = ML = 8
MH = ML = 4
EXTENDED MESH

Figure 6.7.14: Displacement responses of semi-infinite three-layered system at Point
A to surface traction τ0(t): (a) by singly asymptotic open boundary
and (b) by doubly asymptotic open boundary

6.8 Conclusions

A matrix solution for the scaled boundary finite element equation in dynamic stiff-
ness is obtained for the modeling of scalar wave propagation in semi-infinite layered
systems. The solution is expressed as high-order doubly asymptotic continued frac-
tion in the frequency domain. It is formulated in the time domain as a high-order
open boundary condition. From the analysis results obtained in the frequency and
time domains, it can be concluded as follows:

1. In the frequency domain, the singly asymptotic continued fraction solution
can only model the propagating waves at high frequencies (i.e. above cut-
off frequencies), but cannot model the evanescent waves at low frequencies
(i.e. below cut-off frequencies). In contrast, the doubly asymptotic continued
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fraction solution can model not only the propagating waves at high frequen-
cies, but also the evanescent waves at low frequencies. The solution rapidly
converges to the reference solution as the orders increase.

2. In the time domain, the accuracy of the results obtained from the singly asymp-
totic open boundary improves very slowly with increasing order. In addition,
“fictitious reflection” always occurs at the late time. In case of the doubly
asymptotic open boundary with the same number of terms, “fictitious reflec-
tion” does not exist. In addition, the accuracy of the results is more higher at
both early time and late time.

3. The high-order doubly asymptotic open boundary for scalar wave propagation
in semi-infinite layered systems is indispensable to long-time analyses. The
open boundary is temporally local. It is expressed as a system of first-order
ordinary differential equation in time. The two time-independent coefficient
matrices, the stiffness matrix [Kh] and the damping matrix [Ch] are banded
and symmetric. Thus well-established time-stepping schemes in structural
dynamics are directly applicable.
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Chapter 7

Doubly Asymptotic Open Boundary
for Vector Wave Propagation in
Semi-Infinite Layer

Abstract

The propagation of vector waves in a semi-infinite layer with a constant depth is
addressed by using the scaled boundary finite element method. In comparison with
scalar wave problems in previous chapter, an extra coefficient matrix [E1] appears
in the scaled boundary finite element equation. The doubly asymptotic continued
fraction solution is rederived to include the contribution of [E1]. The factor matrices
are introduced to the continued fraction solution to improve the numerical stability
of the solution. The coefficients of the solution are determined recursively by satis-
fying the scaled boundary finite element equation in dynamic stiffness at both high-
and low-frequency limits. By introducing auxiliary variables and using the doubly
asymptotic continued fraction solution, the force-displacement relationship on the
boundary is formulated as a high-order doubly asymptotic open boundary condition
in the frequency domain. The open boundary is expressed as a system of first-order
ordinary differential equations in the time domain. Standard time-step schemes can
be directly applied to perform the time integration. No parameters other than the
orders of continued fraction are selected by the user.

7.1 Introduction

As mentioned in the previous chapters, it is necessary to introduce an artificial
boundary to the boundary of the computational domain or the interior region when-
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ever an unbounded domain or an exterior region is modeled for a wave propagation
problem. The boundary condition enforced on the artificial boundary is aimed at
absorbing propagating waves to prevent fictitious reflection at the boundary which
often pollutes the solution. Today there are several absorbing boundary conditions
(ABCs) which can be classified into two groups. The ABCs in the first group are
global ABCs obtained from employing rigorous methods. The ABCs in the second
group are local ABCs obtained from employing approximate methods. The global
ABCs provide high accuracy and robustness, but are computationally expensive due
to convolution integrals, while the local ABCs are geometrically universal, compu-
tationally efficient, but less accurate (Tsynkov, 1998).

For a long-time analysis of large-scale problems, the global ABCs are more im-
practical due to their large demand on storage capacity and computing time (Ben-
nett, 1976). This led to the search for high quality approximations that are spatially
and temporally local (Kausel, 1988). As a result, a large number of local ABCs were
developed such as the viscous boundary condition (Lysmer and Kuhlemeyer, 1969)
and the extrapolation boundary condition (Liao and Wong, 1984). In order to
improve the accuracy of the boundary condition, high-order ABCs were proposed
such as the paraxial boundary condition (Engquist and Majda, 1979) and the BGT
boundary condition (Bayliss and Turkel, 1982) etc.

Even though high-order ABCs can increase the accuracy by increasing the order,
they encounter difficulties in numerical implementation when the order is higher than
two (Givoli, 2004). In recent years, local high-order ABCs have been proposed, for
example, the Givoli-Neta ABC Givoli and Neta (2003), the Hagstrom-Warburton
ABC Hagstrom and Warburton (2004). These high-order local ABCs are practically
implementable for an arbitrarily order, based on the concept of using auxiliary
variables originally proposed by Collino (1993).

Most of high-order ABCs are singly asymptotic at the high-frequency limit and
appropriate for propagating waves. It has been shown in Chapter 6 that the singly
asymptotic open boundary is not suitable for long-time analyses involved layered
system since it cannot model evanescent waves below the cut-off frequencies. To
improve the accuracy of the long-time behavior of ABCs, the inclusion of evanes-
cent modes is necessary (Hagstrom et al., 2008). The high-order doubly asymptotic
open boundary condition constructed in Chapter 3 has been proposed for the modal
equations of scalar waves in a semi-infinite layer. The open boundary condition is
asymptotic at both high- and low-frequency limits. It has been shown that the dou-
bly asymptotic boundary can model not only propagating waves but also evanescent
waves.
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For vector wave propagation problems, most of existing high-order ABCs are
singly asymptotic at high-frequency limit, specifically developed for circular and
spherical boundaries such as the high-order ABCs proposed by Clayton and Engquist
(1977) and Randall (1988, 1989). However, in case of semi-infinite layers, it is
rarely reported in literature, for example, the high-order ABC developed by Higdon
(1992) and Guddati and Tassoulas (1999). From application point of view, it is
necessary to develop a temporally local open boundary that is applicable to vector
wave propagation in semi-infinite layers.

The objective of this chapter is to developed a doubly asymptotic open boundary
for vector wave propagation in a homogeneous semi-infinite layer with a constant
depth by extending the SBFEM. This chapter is organized as follows: in Section
7.2, the governing equation (the equation of the in-plane motion) of a homogeneous
semi-infinite layer with a constant depth is derived for vector waves. In Section 7.3,
the SBFE equation in displacement of the semi-infinite layer is derived in the time
domain. In Section 7.4, the SBFE equation in dynamic stiffness of the semi-infinite
layer is derived in the frequency domain. In Section 7.5, the derivation of the doubly
asymptotic continued fraction solution is presented. In Section 7.6, the high-order
doubly asymptotic open boundary condition is constructed in both frequency and
time domains. In Section 7.7, numerical examples are demonstrated in the frequency
and time domains. In Section 7.8, conclusions are presented.

7.2 Governing differential equation of vector waves

A semi-infinite layer with constant depth h is shown in Fig. 7.2.1(a). The semi-
infinite layer is isotropic, homogeneous and elastic. The material constants are the
mass density ρ, the Young’s modulus E and the Poisson’s ratio ν. The in-plane
motion (u = u(x, y, t) and v = v(x, y, t) in the x and y directions, respectively)
of the semi-infinite layer in the Cartesian coordinates (x,y) and the plane strain
condition are considered. For the boundary conditions, it is assumed that the vertical
boundary ΓV located at x = xb is subjected to time-dependent in-plane normal and
shear stresses. Free condition is imposed on the upper boundary ΓU , and fixed
boundary condition is imposed on the lower boundary.
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Figure 7.2.1: Homogeneous semi-infinite layer with constant depth: (a) geometry
and semi-discretization and (b) typical element

Introducing the differential operator denoting the matrix of spatial derivatives
in the Cartesian coordinates,

[L] =

[
∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]T

(7.2.1)

The in-plane strains {ε} = [ εx εy γxy ]T are expressed as

{ε} = [L]{w} (7.2.2)

where the displacement vector {w} is defined as

{w} = [ u v ]T (7.2.3)

εx and εy are the normal strains in the x and y directions, γxy is the shear strain.
The in-plane stresses {σ} = [ σx σy τxy ]T are equal to

{σ} = [D]{ε} (7.2.4)

where σx and σy are the normal stresses in the x and y directions, τxy is the shear
stress, [D] is the elasticity matrix for plane strain condition,

[D] =

⎡⎢⎣ λ + 2G λ

λ λ + 2G

G

⎤⎥⎦ (7.2.5)

219



where the Lamé constant λ and the shear modulus G are

λ =
Eν

(1 + ν)(1 − 2ν)
(7.2.6)

G =
E

2(1 + ν)
(7.2.7)

The governing equation of motion in the elastic medium is expressed as

[L]T{σ} = ρ{ẅ} (7.2.8)

where {ẅ} = [ ü v̈ ]T is the acceleration vector.
Substituting Eqs. (7.2.3) and (7.2.4) into Eq. (7.2.8), using Eqs. (7.2.2) and

(7.2.5), and rearranging the equation lead to

(λ + G)φ,x +G∇2u = ρü (7.2.9a)

(λ + G)φ,y +G∇2v = ρv̈ (7.2.9b)

where the potential φ is defined as

φ = εx + εy (7.2.10)

and the Laplace operator ∇2 is defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
(7.2.11)

Differentiating Eqs. (7.2.9a) and (7.2.9b) with respect to y and x, respectively, com-
bining them, using Eq. (7.2.10), and rearranging the resulting equation lead to the
equation of dilatational wave or P -wave formulated in two-dimensional Cartesian
coordinates,

∇2φ =
1

c2
p

φ̈ (7.2.12)

with the speed of P -wave cp,

cp =

√
(λ + 2G)

ρ
(7.2.13)

Afterwards, differentiating Eqs. (7.2.9a) and (7.2.9b) with respect to y and x, re-
spectively, subtracting the latter from the former, and rearranging the equation lead
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to the equation of shear wave or S-wave formulated in two-dimensional Cartesian
coordinates,

∇2ϕ =
1

c2
s

ϕ̈ (7.2.14)

where the potential ϕ is defined as

ϕ = u,y −v,x (7.2.15)

and cs is the speed of S-wave,

cs =

√
G

ρ
(7.2.16)

7.3 Scaled boundary finite element method of semi-

infinite layer with constant depth

The scaled boundary finite element method (SBFEM) is a novel semi-analytical
approach. It was first developed for modeling unbounded domains with arbitrary
geometry and called the consistent infinitesimal finite-element cell method (Wolf
and Song, 1996). The original derivation of the SBFEM for vector wave propagation
was proposed by Wolf and Song (1995). In modeling of the semi-infinite layer with
constant depth h, which is a special case (see Fig. 7.2.1(a)), the scaling center O

is located at infinity, and thus the scaling corresponds to translating the vertical
boundary ΓV (Li et al., 2005).

The vertical boundary ΓV shown in Fig. 7.2.1(a) is discretized by one-dimensional
line elements. A typical element is shown in Fig. 7.2.1(b). Its geometry can be
expressed in the scaled boundary coordinates (ξ, η) as

x(ξ) = xb + ξ (7.3.1a)

y(η) = {N(η)}T{yb} (7.3.1b)

where ξ is the horizontal coordinate that ξ ≥ 0, η the vertical coordinate that -1≤
η ≤1, {N(η)}T transpose of the shape function vector formulated in the coordinate
η, and {yb} the vertical coordinate vector of the nodes on the vertical boundary ΓV .
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The vector of spatial derivatives in the Cartesian coordinates [ ∂
∂x

∂
∂y

]T is related

to those in the local coordinates [ ∂
∂ξ

∂
∂η

]T by

[ ∂
∂x

∂
∂y

]T = [J(η)]−1[ ∂
∂ξ

∂
∂η

]T (7.3.2)

where [J(η)] is the Jacobian matrix, which is expressed as

[J(η)] =

[
x(ξ),ξ y(η),ξ

x(ξ),η y(η),η

]
=

[
1 0

0 y(η),η

]
(7.3.3)

Its inverse and determinant are

[J(η)]−1 =
1

|J(η)|

[
y(η),η 0

0 1

]
(7.3.4)

|J(η)| = y(η),η = {N(η)},Tη {yb} (7.3.5)

respectively. By substituting Eq. (7.3.4) into Eq. (7.3.2), the spatial derivatives in
the Cartesian coordinates are rewritten as

∂

∂x
=

∂

∂ξ
(7.3.6a)

∂

∂y
=

1

|J(η)|
∂

∂η
(7.3.6b)

Substituting Eq. (7.3.6) into Eq. (7.2.1) and using Eq. (7.3.5) yield

[L] = [b1]
∂

∂ξ
+ [b2(η)]

∂

∂η
(7.3.7)

where [b1] and [b2(η)] are defined as

[b1] =

[
1 0 0

0 0 1

]T

(7.3.8a)

[b2(η)] =
1

|J(η)|

[
0 0 1

0 1 0

]T

(7.3.8b)

The displacements along a horizontal line passing through a node on the bound-
ary are represented by nodal displacement functions {w(ξ)}. The displacement
fields are approximated by interpolating the nodal displacement function {w(ξ)}
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piecewisely,

w = w(ξ, η) = [N(η)]{w(ξ)} (7.3.9)

where [N(η)] denotes the shape function matrix formulated in the coordinate η,

[N(η)] =

[
N1(η) 0 N2(η) 0 . . .

0 N1(η) 0 N2(η) . . .

]
(7.3.10)

Substituting Eqs. (7.3.7) and (7.3.9) into Eq. (7.2.2) yields

{ε} = [B1(η)]{w(ξ)},ξ +[B2(η)]{w(ξ)} (7.3.11)

where [B1(η)] and [B2(η)] are defined as

[B1(η)] = [b1][N(η)] (7.3.12a)

[B2(η)] = [b2(η)][N(η)],η (7.3.12b)

Substituting Eq. (7.3.11) into Eq. (7.3.13) leads to

{σ} = [D]([B1(η)]{w(ξ)},ξ +[B2(η)]{w(ξ)}) (7.3.13)

In the derivation of the scale boundary finite element equation in displacement,
the virtual work principle∫

V

{ε∗}T{σ}dV =

∫
V

w∗(ξ, η)ρẅdV +

∫
ΓV

w∗(ξ, η)τsdΓV (7.3.14)

is employed (Wolf, 2003). The left-hand side of the equation represents the in-
ternal virtual work where the virtual strain vector {ε∗} corresponds to the strain
vector in Eq. (7.3.11). The right-hand side is the external work of the inertial force
and the surface traction {ts} where the virtual displacements {w∗} = {w∗(ξ, η)} is
approximated by

w∗(ξ, η) = [N(η)]{w∗(ξ)} = {w∗(ξ)}T [N(η)]T (7.3.15)

using the same shape function as that in Eq. (7.3.9). For a two-dimensional problem,
the third dimension is assumed to be a unit length. An infinitesimal area dV and
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an infinitesimal boundary dΓV are defined as

dV = |J(η)|dξdη (7.3.16a)

dΓV = |J(η)|dη (7.3.16b)

respectively. For convenience, each term in Eq. (7.3.14) is considered individually.
Using Eq. (7.3.11) for {ε∗} and substituting Eqs. (7.3.13) and (7.3.16a) into the
single term on the left-hand side of Eq. (7.3.14) yield∫

V

{ε∗}T{σ}dV =

∫ ∞

0

{w∗(ξ)},Tξ [E0]{w(ξ)},ξ dξ +

∫ ∞

0

{w∗(ξ)},Tξ [E1]T{w(ξ)}dξ

+

∫ ∞

0

{w∗(ξ)}T [E1]{w(ξ)},ξ dξ +

∫ ∞

0

{w∗(ξ)}T [E2]{w(ξ)}dξ

(7.3.17)

where the coefficient matrices [E0], [E1] and [E2] are defined as

[E0] =

∫ +1

−1

[B1(η)]T [D][B1(η)]|J(η)|dη (7.3.18a)

[E1] =

∫ +1

−1

[B2(η)]T [D][B1(η)]|J(η)|dη (7.3.18b)

[E2] =

∫ +1

−1

[B2(η)]T [D][B2(η)]|J(η)|dη (7.3.18c)

[E0] is symmetric and positive definite. [E2] is also symmetric but semi-positive
definite.

To eliminate the derivatives {w∗(ξ)},Tξ in the first and second terms on the right-
hand side of Eq. (7.3.17), integration by parts is applied. This results in∫ ∞

0

{w∗(ξ)},Tξ [E0]{w(ξ)},ξ dξ ={w∗(ξ)}T [E0]{w(ξ)},ξ

−
∫ ∞

0

{w∗(ξ)}T [E0]{w(ξ)},ξξ dξ (7.3.19)

for the first term, and∫ ∞

0

{w∗(ξ)},Tξ [E1]T{w(ξ)}dξ ={w∗(ξ)}T [E1]T{w(ξ)}

−
∫ ∞

0

{w∗(ξ)}T [E1]T{w(ξ)},ξ dξ (7.3.20)
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for the second term. Substituting Eqs. (7.3.19) and (7.3.20) back into Eq. (7.3.17)
results in∫

V

{ε∗}T{σ}dV ={w∗(ξ)}T [E0]{w(ξ)},ξ −
∫ ∞

0

{w∗(ξ)}T [E0]{w(ξ)},ξξ dξ

+ {w∗(ξ)}T [E1]T{w(ξ)} −
∫ ∞

0

{w∗(ξ)}T [E1]T{w(ξ)},ξ dξ

+

∫ ∞

0

{w∗(ξ)}T [E1]{w(ξ)},ξ dξ +

∫ ∞

0

{w∗(ξ)}T [E2]{w(ξ)}dξ

(7.3.21)

Substituting Eqs. (7.3.9), (7.3.15) and (7.3.16a) into the first term on the right-hand
side of Eq. (7.3.14) results in∫

V

w∗(ξ, η)ρẅdV =

∫ ∞

0

{w∗(ξ)}T [M0]{ẅ}dξ (7.3.22)

where the coefficient matrix [M0] is defined as

[M0] =

∫ +1

−1

[N(η)]T ρ[N(η)]|J(η)|dη (7.3.23)

[M0] is also symmetric and positive definite. Substituting Eqs. (7.3.15) and (7.3.16a)
into the last term on the right-hand side of Eq. (7.3.14) results in∫

ΓV

w∗(ξ, η)τsdΓV = {w∗(ξ)}T{Q} (7.3.24)

where the internal nodal force vector {Q} is defined as

{Q} =

∫ +1

−1

[N(η)]T τs|J(η)|dη (7.3.25)

Substituting Eqs. (7.3.21), (7.3.22), and (7.3.24) into Eq. (7.3.14) leads to

{w∗(ξ)}T [E0]{w(ξ)},ξ +{w∗(ξ)}T [E1]T{w(ξ)} − {w∗(ξ)}T{Q}
−
∫ ∞

0

({w∗(ξ)}T [E0]{w(ξ)},ξξ + {w∗(ξ)}T [E1]T{w(ξ)},ξ
−{w∗(ξ)}T [E1]{w(ξ)},ξ −{w∗(ξ)}T [E2]{w(ξ)}

− {w∗(ξ)}T [M0]{ẅ}) dξ = 0 (7.3.26)
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Equation (7.3.26) is satisfied when

{w∗(ξ)}T [E0]{w(ξ)},ξ +{w∗(ξ)}T [E1]T{w(ξ)} − {w∗(ξ)}T{Q} = 0 (7.3.27)

and the integrand of the integral over ξ becomes zero,

{w∗(ξ)}T ([E0]{w(ξ)},ξξ +[E1]T{w(ξ)},ξ −[E1]{w(ξ)},ξ
− [E2]{w(ξ)} − [M0]{ẅ}) = 0 (7.3.28)

Rearranging Eq. (7.3.27) and for arbitrary {w∗(ξ)}T lead to

{Q} = [E0]{w(ξ)},ξ +[E1]T{w(ξ)} (7.3.29)

in the time domain, which is equivalent to

{Q} = [E0]{W (ξ)},ξ +[E1]T{W (ξ)} (7.3.30)

in the frequency domain, where {W (ξ)} denotes the nodal displacement amplitudes.
Similarly, for arbitrary {w∗(ξ)}T , Eq. (7.3.28) leads to the scaled boundary finite
element equation in displacement formulated in the time domain,

[E0]{w(ξ)},ξξ +([E1]T − [E1]){w(ξ)},ξ −[E2]{w(ξ)} − [M0]{ẅ} = 0 (7.3.31)

The scaled boundary finite element equation in displacement formulated in the fre-
quency domain is obtained from the Fourier transform of Eq. (7.3.31) as

[E0]{W (ξ)},ξξ +([E1]T − [E1]){W (ξ)},ξ −[E2]{W (ξ)} + ω2[M0]{W (ξ)} = 0

(7.3.32)

where ω is the excitation frequency. Note that the coefficient matrices of the semi-
infinite layer at the vertical boundary ΓV are obtained from the assembly of the
coefficient matrices [E0], [E1], [E2] and [M0] of individual elements. To simplify the
nomenclature, the same symbols are used for the assembled coefficient matrices.
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7.4 Dynamic stiffness matrix of semi-infinite layer

with constant depth

In the frequency domain, the excitation force-displacement relationship with the
corresponding displacements is expressed as

{R} = [S∞(ω)]{W (ξ)} (7.4.1)

where [S∞(ω)] is the dynamic stiffness matrix of the semi-infinite layer, and {R} the
interaction forces that relates to the internal nodal force vector {Q} by the following
equation:

{R} = −{Q} (7.4.2)

Substituting Eq. (7.4.2) into Eq. (7.4.1) and using Eq. (7.3.1a) yield

−[E0]{W (ξ)},ξ −[E1]T{W (ξ)} = [S∞(ω)]{W (ξ)} (7.4.3)

Taking the derivative of Eq. (7.4.3) with respect to ξ and rearranging the equation
result in

−[E0]{W (ξ)},ξξ −[E1]T{W (ξ)},ξ −[S∞(ω)]{W (ξ)},ξ = 0 (7.4.4)

Combining Eq. (7.3.32) and Eq. (7.4.4) leads to

−[S∞(ω)]{W (ξ)},ξ −[E1]{W (ξ)},ξ −[E2]{W (ξ)} + ω2[M0]{W (ξ)} = 0 (7.4.5)

Equation (7.4.3) is rearranged as

{W (ξ)},ξ = −[E0]−1[E1]T{W (ξ)} − [E0]−1[S∞(ω)]{W (ξ)} (7.4.6)

Substituting Eq. (7.4.6) back into Eq. (7.4.5) leads to the scaled boundary finite
element equation in dynamic stiffness formulated in the frequency domain,

([S∞(ω)] + [E1])[E0]−1([S∞(ω)] + [E1]T ) − [E2] + ω2[M0] = 0 (7.4.7)

as {W (ξ)} can be arbitrary.
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A concise formulation results when the transformation based on the following
eigenvalue problem is introduced

[M0][Φ] = [E0][Φ]�Λ2 (7.4.8)

where �Λ2 and [Φ] denote the eigenvalues and eigenvectors, respectively. Since [E0]

and [M0] are positive definite, the eigenvectors are orthogonal. They are normalized
as

[Φ]T [E0][Φ] = [I] (7.4.9a)

[Φ]T [M0][Φ] = �Λ2 (7.4.9b)

Pre- and post-multiplying Eq. (7.4.7) by [Φ]T and [Φ], respectively and using Eq.
(7.4.9) result in

[s∞(ω)]2 + [e1][s∞(ω)] + [s∞(ω)][e1]T + [e1][e1]T − [e2] + ω2�Λ2 = 0 (7.4.10)

where

[s∞(ω)] = [Φ]T [S∞(ω)][Φ] (7.4.11)

[e1] = [Φ]T [E1][Φ] (7.4.12)

[e2] = [Φ]T [E2][Φ] (7.4.13)

Equation (7.4.10)The solution for [s∞(ω)] can be determined directly from

[s∞(ω)] = [Θ21][Θ11]
−1 (7.4.14)

where [Θ21] and [Θ11] are obtained from the following eigen-decomposition:

[Z] = [Θ]�Ω[Θ]−1 (7.4.15)

with the matrix [Z], the eigenvectors [Θ] and the eigenvalues �Ω

[Z] =

[
−[e1]T −[I]

[e1][e1]T − [e2] + ω2�Λ2 [e1]

]
(7.4.16a)

[Θ] =

[
[Θ11] [Θ12]

[Θ21] [Θ22]

]
(7.4.16b)

�Ω =

⌈
�Ω11

�Ω22

⌋
(7.4.16c)
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�Ω is arranged in such a way that the real parts of the eigenvalues of �Ω11 are
negative and those of �Ω22 are positive, and [Θ] is partitioned conformably with
the eigenvalues (Wolf and Song, 1996).

7.5 Doubly asymptotic continued fraction solution

for dynamic stiffness matrix

This section describes the solution of the scaled boundary finite element equation for
dynamic stiffness matrix (Eq. (7.4.10)). The solution is sought as a doubly asymp-
totic continued fraction solution. Two steps are involved in the solution procedure.
In the first step detailed in Section 7.5.1, a continued fraction solution is determined
at the high-frequency limit recursively. In each recursion, the coefficient matrices
of one term of the continued fractions is obtained, and an equation is established
for the residual. In the second step detailed in Section 7.5.2, a continued fraction
solution of the residual equation of the high-frequency solution is determined at
the low-frequency limit recursively. The doubly asymptotic solution is obtained by
joining the low-frequency solution to the last term of the high-frequency solution.

7.5.1 Continued fraction solution at high frequency

The continued fraction solution at the high-frequency limit (ω → ∞) is written as

[s∞(ω)] = [k∞] + (iω)[c∞] − [ψ(1)][y(1)(ω)]−1[ψ(1)]T (7.5.1a)

[y(i)(ω)] = [y
(i)
0 ] + (iω)[y

(i)
1 ] − [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T (i = 1, 2, 3, ..., MH)

(7.5.1b)

where [k∞], [c∞], [y
(i)
0 ] and [y

(i)
1 ] are coefficient matrices to be determined recursively

in the solution procedure. The additional factor matrices [ψ(1)] and [ψ(i+1)] are
introduced in order to improve numerical stability of the solution. To maintain the
symmetry of the coefficient matrices of the open boundary (Eq. (7.6.16) in Section
7.6), the factor matrices and the transposed factor matrices are used in the residual
terms [ψ(1)][y(1)(ω)]−1[ψ(1)]T and [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T are residual terms. MH

is the order of the continued fraction solution at high frequency.
The coefficient matrices [k∞] and [c∞] are determined by substituting Eq. (7.5.1a)

into Eq. (7.4.10). This leads to an equation of a power series of (iω), including the

229



following three terms:

(iω)2([c∞]2 − �Λ2) + (iω)([c∞][k∞] + [c∞][e1]T + [k∞][c∞] + [e1][c∞])

+ (([k∞] + [e1])([k∞] + [e1]T ) − [e2] − ((iω)[c∞] + [k∞] + [e1])[ψ(1)]

× [y(1)(ω)]−1[ψ(1)]T − [ψ(1)][y(1)(ω)]−1[ψ(1)]T ((iω)[c∞] + [k∞] + [e1]T )+

+ [ψ(1)][y(1)(ω)]−1[ψ(1)]T [ψ(1)][y(1)(ω)]−1[ψ(1)]T
)

= 0 (7.5.2)

This equation is satisfied by setting all the three terms equal to zero. Thus the
solution for [c∞] that satisfies the radiation condition is obtained from the first term
((iω)2 term) by selecting the positive root of each element on the diagonal of �Λ2,

[c∞] = �Λ (7.5.3)

Substituting Eq. (7.5.3) into the second term ((iω) term) in Eq. (7.5.2) leads to the
Lyapunov equation of [k∞],

�Λ[k∞] + [k∞]�Λ = −�Λ[e1]T − [e1]�Λ (7.5.4)

which can be solved by the function “lyap” in MATLAB. [k∞] is symmetric as well
as [c∞].

The last term in Eq. (7.5.2) is an equation of [y(1)(ω)]−1. After being pre- and
post-multiplied by [ψ(1)]−1[y(1)(ω)] and [y(1)(ω)][ψ(1)]−T , respectively, it is expressed
as the i = 1 case of

[a(i)] − [y(i)(ω)]([b
(i)
0 ]T + (iω)[b

(i)
1 ]T ) − ([b

(i)
0 ] + (iω)[b

(i)
1 ])[y(i)(ω)]

+ [y(i)(ω)][c(i)][y(i)(ω)] = 0 (7.5.5)

with the following coefficient matrices:

[a(1)] = [ψ(1)]T [ψ(1)] (7.5.6a)

[b
(1)
0 ] = [ψ(1)]T ([k∞] + [e1]T )[ψ(1)]−T (7.5.6b)

[b
(1)
1 ] = [ψ(1)]T [c∞][ψ(1)]−T (7.5.6c)

[c(1)] = [ψ(1)]−1(([k∞] + [e1])([k∞] + [e1]T ) − [e2])[ψ(1)]−T (7.5.6d)

The factor matrix [ψ(1)] is selected to improve the stability of the solution by avoiding
the singularity in [c(1)]. A good choice is

[ψ(1)] = [φ(1)]�|λ(1)|1/2 (7.5.7)
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where the eigenvectors [φ(1)] and the eigenvalues �λ(1) are obtained from the fol-
lowing eigen-decomposition:

([k∞] + [e1])([k∞] + [e1]T ) − [e2] = [φ(1)]�λ(1)[φ(1)]−1 (7.5.8)

Note that the eigenvectors are orthogonal i.e. [φ(1)]T = [φ(1)]−1. By using Eqs.
(7.5.7) and (7.5.8), Eq. (7.5.6) is rewritten as

[a(1)] = �|λ(1)| (7.5.9a)

[b
(1)
0 ] = �|λ(1)|1/2[φ(1)]−1([k∞] + [e1]T )[φ(1)]�|λ(1)|−1/2 (7.5.9b)

[b
(1)
1 ] = �|λ(1)|1/2[φ(1)]−1[c∞][φ(1)]�|λ(1)|−1/2 (7.5.9c)

[c(1)] = �sgn(1) (7.5.9d)

�sgn(1) is the sign matrix of �λ(1). Its diagonal entries are equal to +1 or −1.
To begin the recursive procedure, Eq. (7.5.1b) is substituted into Eq. (7.5.5).

This also results in an equation of a power series of (iω) grouped into the following
three terms:

(iω)2(−[y
(i)
1 ][b

(i)
1 ]T − [b

(i)
1 ][y

(i)
1 ] + [y

(i)
1 ][c(i)][y

(i)
1 ]) + (iω)

(
(−[b

(i)
1 ] +

[y
(i)
1 ][c(i)])[y

(i)
0 ] + [y

(i)
0 ](−[b

(i)
1 ]T + [c(i)][y

(i)
1 ]) − [b

(i)
0 ][y

(i)
1 ] − [y

(i)
1 ][b

(i)
0 ]T
)

+
(
([a(i)] − [b

(i)
0 ][y

(i)
0 ] − [y

(i)
0 ][b

(i)
0 ]T + [y

(i)
0 ][c(i)][y

(i)
0 ]) −

(
(−[b

(i)
0 ]

+ [y
(i)
0 ][c(i)]) + (iω)(−[b

(i)
1 ] + [y

(i)
1 ][c(i)])

)
[ψ(i+1)][y(i+1)(ω)]−1

× [ψ(i+1)]T − [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T
(
(−[b

(i)
0 ]T + [c(i)][y

(i)
0 ])

+ (iω)(−[b
(i)
1 ]T + [c(i)][y

(i)
1 ])
)

+ [ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T

× [c(i)][ψ(i+1)][y(i+1)(ω)]−1[ψ(i+1)]T
)

= 0 (7.5.10)

Equation (7.5.10) is also satisfied by setting all the three terms equal to zero. Pre-
and post-multiplying the first term ((iω)2 term) by [y

(i)
1 ]−1 yield the Lyapunov equa-

tion of [y
(i)
1 ]−1,

[b
(i)
1 ]T [y

(i)
1 ]−1 + [y

(i)
1 ]−1[b

(i)
1 ] = [c(i)] (7.5.11)

which can be solved by the function “lyap” in MATLAB. [y
(i)
1 ] is obtained from the

inverse of the solution of Eq. (7.5.11). [y
(i)
1 ] is symmetric as well as [b

(i)
1 ] and [c(i)].
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The second term ((iω) term) in Eq. (7.5.10) is the Lyapunov equation of [y
(i)
0 ],

(−[b
(i)
1 ] + [y

(i)
1 ][c(i)])[y

(i)
0 ] + [y

(i)
0 ](−[b

(i)
1 ]T + [c(i)][y

(i)
1 ]) = [b

(i)
0 ][y

(i)
1 ] + [y

(i)
1 ][b

(i)
0 ]T

(7.5.12)

which can be solved by the function “lyap” in MATLAB. [y
(i)
0 ] is symmetric as well

as [y
(i)
1 ].

The last term in Eq. (7.5.10) is an equation of [y(i+1)(ω)]−1. Pre- and post-
multiplying the last term by [y(i+1)(ω)][ψ(i+1)]−1 and [ψ(i+1)]−T [y(i+1)(ω)], respec-
tively lead to an equation in the same form as Eq. (7.5.5)

[a(i+1)] − ([b
(i+1)
0 ] + (iω)[b

(i+1)
1 ])[y(i+1)(ω)] − [y(i+1)(ω)]([b

(i+1)
0 ]T

+ (iω)[b
(i+1)
1 ]T ) + [y(i+1)(ω)][c(i+1)][y(i+1)(ω)] = 0 (7.5.13)

with the coefficient matrices

[a(i+1)] = [ψ(i+1)]T [c(i)][ψ(i+1)] (7.5.14a)

[b
(i+1)
0 ] = [ψ(i+1)]T (−[b

(i)
0 ]T + [c(i)][y

(i)
0 ])[ψ(i+1)]−T (7.5.14b)

[b
(i+1)
1 ] = [ψ(i+1)]T (−[b

(i)
1 ]T + [c(i)][y

(i)
1 ])[ψ(i+1)]−T (7.5.14c)

[c(i+1)] = [ψ(i+1)]−1([a(i)] − [b
(i)
0 ][y

(i)
0 ] − [y

(i)
0 ][b

(i)
0 ]T + [y

(i)
0 ][c(i)][y

(i)
0 ])[ψ(i+1)]−T

= �sgn(i+1) (7.5.14d)

The factor matrix [ψ(i+1)] is set equal to

[ψ(i+1)] = [φ(i+1)]�|λ(i+1)|1/2 (7.5.15)

where the eigenvectors [φ(i+1)] and the eigenvalues �λ(i+1) are obtained from the
following eigen-decomposition:

[a(i)] − [b
(i)
0 ][y

(i)
0 ] − [y

(i)
0 ][b

(i)
0 ]T + [y

(i)
0 ][c(i)][y

(i)
0 ] = [φ(i+1)]�λ(i+1)[φ(i+1)]−1 (7.5.16)

�sgn(i+1) is the sign matrix of �λ(i+1) of which diagonal entries are ±1. The
continued fraction solution is determined recursively using Eq. (7.5.11) where the
coefficient matrices [a(1)], [b

(1)
0 ], [b

(1)
1 ] and [c(1)] are initialized by Eq. (7.5.9) and

updated during the recursion with Eq. (7.5.14).
After an order MH continued fraction solution is obtained at the high-frequency

limit, the residual satisfies Eq. (7.5.13) with i = MH .

232



7.5.2 Continued fraction solution at low frequency

The residual equation (Eq. (7.5.13)) of the high-frequency continued fraction solution
is solved again by a continued fraction but at the low frequency limit (ω → 0). For
simplicity in notation, the residual is expressed as

[yL(ω)] = [y(MH+1)(ω)] (7.5.17)

and Eq. (7.5.18) is rewritten as

[aL] − ([bL0] + (iω)[bL1])[yL(ω)] − [yL(ω)]([bL0]
T + (iω)[bL1]

T )

+ [yL(ω)][cL][yL(ω)] = 0 (7.5.18)

with the following matrices used at the low-frequency limit:

[aL] = [a(MH+1)] = [ψ
(0)
L ]T [c(MH)][ψ

(0)
L ] (7.5.19a)

[bL0] = [b
(MH+1)
0 ] = [ψ

(0)
L ]T (−[b

(MH)
0 ]T + [c(MH)][y

(MH)
0 ])[ψ

(0)
L ]−T (7.5.19b)

[bL1] = [b
(MH+1)
1 ] = [ψ

(0)
L ]T (−[b

(MH)
1 ]T + [c(MH)][y

(MH)
1 ])[ψ

(0)
L ]−T (7.5.19c)

[cL] = [c(MH+1)] = [ψ
(0)
L ]−1[a(MH)][ψ

(0)
L ]−T = �sgn

(0)
L  (7.5.19d)

where

[ψ
(0)
L ] = [ψ(MH+1)] (7.5.20a)

�sgn
(0)
L  = �sgn(MH+1) (7.5.20b)

The continued fraction solution at the low-frequency limit is expressed as

[yL(ω)] = [y
(0)
L0 ] + (iω)[y

(0)
L1 ] − (iω)2[ψ

(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T (7.5.21a)

[y
(i)
L (ω)] = [y

(i)
L0] + (iω)[y

(i)
L1] − (iω)2[ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T (i = 1, 2, ..., ML)

(7.5.21b)

where [y
(0)
L0 ], [y

(0)
L1 ], [y

(i)
L0] and [y

(i)
L1] are coefficient matrices to be determined recur-

sively. The factor matrices [ψ
(1)
L ] and [ψ

(i+1)
L ] are introduced to improve numerical

stability of the solution. (iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T and (iω)2[ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

are residual terms. ML is the order of the continued fraction solution at low fre-
quency.
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Substituting Eq. (7.5.21a) into Eq. (7.5.18) leads to an equation of a power series
of (iω),

([y
(0)
L0 ][cL][y

(0)
L0 ] − [bL0][y

(0)
L0 ] − [y

(0)
L0 ][bL0]

T + [aL]) + (iω) ((−[bL0]

+[y
(0)
L0 ][cL])[y

(0)
L1 ] + [y

(0)
L1 ](−[bL0]

T + [cL][y
(0)
L0 ]) − [bL1][y

(0)
L0 ] − [y

(0)
L0 ][bL1]

T
)

+(iω)2
(
([y

(0)
L1 ][cL][y

(0)
L1 ] − [bL1][y

(0)
L1 ] − [y

(0)
L1 ][bL1]

T ) − ((−[bL0]

+[y
(0)
L0 ][cL]) + (iω)(−[bL1] + [y

(0)
L1 ][cL])

)
[ψ

(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

−[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

(
(−[bL0]

T + [cL][y
(0)
L0 ]) + (iω)(−[bL1]

T

+ [cL][y
(0)
L1 ])
)

+ (iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

× [cL][ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T

)
= 0

(7.5.22)

Similarly, this equation is satisfied by setting each of the three terms equal to
zero. The first term (the constant term independent of (iω)) is in terms of the
Riccati equation of [y

(0)
L0 ],

[y
(0)
L0 ][cL][y

(0)
L0 ] − [bL0][y

(0)
L0 ] − [y

(0)
L0 ][bL0]

T + [aL] = 0 (7.5.23)

Instead of solving [y
(0)
L0 ] directly from Eq. (7.5.23), it can be determined from the

static stiffness matrix in another way using Eqs. (7.5.17), (7.5.20a) and (7.5.21a) in
Eq. (7.5.1). This results in

[s∞(ω)] =[k∞] + (iω)[c∞] − [ψ(1)]([y
(1)
0 ] + (iω)[y

(1)
1 ] − [ψ(2)]([y

(2)
0 ] + (iω)[y

(2)
1 ] − . . .

− [ψ(MH)]([y
(MH)
0 ] + (iω)[y

(MH)
1 ] − [ψ

(0)
L ]([y

(0)
L0 ] + (iω)[y

(0)
L1 ]

− (iω)2[ψ
(1)
L ][y

(1)
L (ω)]−1[ψ

(1)
L ]T )−1[ψ

(0)
L ]T )−1[ψ(MH)]T

. . . )−1[ψ(2)]T )−1[ψ(1)]T (7.5.24)

Setting ω equal to zero and rearranging Eq. (7.5.24) reversely yield the solution for
[y

(0)
L0 ],

[y
(0)
L0 ] = − [ψ

(0)
L ]T ([y

(MH)
0 ] − [ψ(MH)]T ([y

(MH−1)
0 ] − . . . − [ψ(2)]T ([y

(1)
0 ]

− [ψ(1)]T ([k∞] − [s∞(ω = 0)])−1[ψ(1)])−1[ψ(2)]

. . .)−1[ψ(MH)])−1[ψ
(0)
L ] (7.5.25)

where [s∞(ω = 0)] is determined from Eq. (7.4.14) by setting ω equal to zero. [y
(0)
L0 ]

is symmetric as well as [s∞(ω = 0)]. The second term ((iω) term) is the Lyapunov
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equation of [y
(0)
L1 ],

(−[bL0] + [y
(0)
L0 ][cL])[y

(0)
L1 ] + [y

(0)
L1 ](−[bL0]

T + [cL][y
(0)
L0 ]) = [bL1][y

(0)
L0 ] + [y

(0)
L0 ][bL1]

T

(7.5.26)

which can be solved by the function “lyap” in MATLAB. [y
(0)
L1 ] is symmetric as well

as [cL] and [y
(0)
L0 ].

The last term in Eq. (7.5.22) is an equation of [y
(1)
L (ω)]−1. Pre- and post-

multiplying the last term by [y
(1)
L (ω)][ψ

(1)
L ]−1 and [ψ

(1)
L ]−T [y

(1)
L (ω)], respectively result

in an equation of [y
(i)
L (ω)]. It is expressed as the i = 1 case of

(iω)2[a
(i)
L ] − [y

(i)
L (ω)]([b

(i)
L0]

T + (iω)[b
(i)
L1]

T ) − ([b
(i)
L0] + (iω)[b

(i)
L1])[y

(i)
L (ω)]

+ [y
(i)
L (ω)][c

(i)
L ][y

(i)
L (ω)] = 0 (7.5.27)

with the following matrices used at the low-frequency limit:

[a
(1)
L ] = [ψ

(1)
L ]T [cL][ψ

(1)
L ] (7.5.28a)

[b
(1)
L0 ] = [ψ

(1)
L ]T (−[bL0]

T + [cL][y
(0)
L0 ])[ψ

(1)
L ]−T (7.5.28b)

[b
(1)
L1 ] = [ψ

(1)
L ]T (−[bL1]

T + [cL][y
(0)
L1 ])[ψ

(1)
L ]−T (7.5.28c)

[c
(1)
L ] = [ψ

(1)
L ]−1(−[bL1][y

(0)
L1 ] − [y

(0)
L1 ][bL1]

T + [y
(0)
L1 ][cL][y

(0)
L1 ])[ψ

(1)
L ]−T = �sgn

(1)
L 

(7.5.28d)

The factor matrix [ψ
(1)
L ] is set equal to

[ψ
(1)
L ] = [φ

(1)
L ]�|λ(1)

L |1/2 (7.5.29)

where the eigenvectors [φ
(1)
L ] and the eigenvalues �λ(1)

L  are obtained from the fol-
lowing eigen-decomposition:

−[bL1][y
(0)
L1 ] − [y

(0)
L1 ][bL1]

T + [y
(0)
L1 ][cL][y

(0)
L1 ] = [φ

(1)
L ]�λ(1)

L [φ(1)
L ]−1 (7.5.30)

�sgn
(1)
L  is the sign matrix of �λ(1)

L  of which diagonal entries are ±1. Substituting
the recursive equation of the low-frequency limit (Eq. (7.5.21b)) into Eq. (7.5.27)
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and rearranging the equation lead to an equation of a power series of (iω),

(−[b
(i)
L0][y

(i)
L0] − [y

(i)
L0][b

(i)
L0]

T + [y
(i)
L0][c

(i)
L ][y

(i)
L0]) + (iω)

(
(−[b

(i)
L0] + [y

(i)
L0][c

(i)
L ])[y

(i)
L1]

+ [y
(i)
L1](−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0]) − [b

(i)
L1][y

(i)
L0] −[y

(i)
L0][b

(i)
L1]

T
)

+ (iω)2
(
([a

(i)
L ]

− [b
(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1]) −

(
(−[b

(i)
L0] + [y

(i)
L0][c

(i)
L ])

+ (iω)(−[b
(i)
L1] + [y

(i)
L1][c

(i)
L ])
)

[ψ
(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

− [ψ
(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T

(
(−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0])

+ (iω)(−[b
(i)
L1]

T + [c
(i)
L ][y

(i)
L1])
)

+ (iω)2[ψ
(i+1)
L ][y

(i+1)
L (ω)]−1

× [ψ
(i+1)
L ]T [c

(i)
L ][ψ

(i+1)
L ][y

(i+1)
L (ω)]−1[ψ

(i+1)
L ]T = 0 (7.5.31)

This equation is satisfied by setting each term equal to zero. Pre- and post-
multiplying the first term (the constant term independent of (iω)) by [y

(i)
L0]

−1 lead
to the Lyapunov equation of [y

(i)
L0]

−1,

[b
(i)
L0]

T [y
(i)
L0]

−1 + [y
(i)
L0]

−1[b
(i)
L0] = [c

(i)
L ] (7.5.32)

which can be solved by the function “lyap” in MATLAB. [y
(i)
L0] is obtained from the

inverse of the solution of Eq. (7.5.32). [y
(i)
L0] is symmetric as well as [c

(i)
L ]. The second

term ((iω) term) in Eq. (7.5.31) is the Lyapunov equation of [y
(i)
L1],

(−[b
(i)
L0] + [y

(i)
L0][c

(i)
L ])[y

(i)
L1] + [y

(i)
L1](−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0]) = [b

(i)
L1][y

(i)
L0] + [y

(i)
L0][b

(i)
L1]

T

(7.5.33)

which can be solved by the function “lyap” in MATLAB. [y
(i)
L1] is symmetric as well

as [y
(i)
L0].

The last term in Eq. (7.5.31) is an equation of [y
(i+1)
L (ω)]−1. Pre- and post-

multiplying the last term by [y
(i+1)
L (ω)][ψ

(i+1)
L ]−1 and [ψ

(i+1)
L ]−T [y

(i+1)
L (ω)], respec-

tively yield the residual equation

(iω)2[a
(i+1)
L ] − ([b

(i+1)
L0 ] + (iω)[b

(i+1)
L1 ])[y

(i+1)
L (ω)] − [y

(i+1)
L (ω)]([b

(i+1)
L0 ]T

+ (iω)[b
(i+1)
L1 ]T ) + [y

(i+1)
L (ω)][c

(i+1)
L ][y

(i+1)
L (ω)] = 0 (7.5.34)
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where the coefficient matrices used updated recursively by

[a
(i+1)
L ] = [ψ

(i+1)
L ]T [c

(i)
L ][ψ

(i+1)
L ] (7.5.35a)

[b
(i+1)
L0 ] = [ψ

(i+1)
L ]T (−[b

(i)
L0]

T + [c
(i)
L ][y

(i)
L0])[ψ

(i+1)
L ]−T (7.5.35b)

[b
(i+1)
L1 ] = [ψ

(i+1)
L ]T (−[b

(i)
L1]

T + [c
(i)
L ][y

(i)
L1])[ψ

(i+1)
L ]−T (7.5.35c)

[c
(i+1)
L ] = [ψ

(i+1)
L ]−1([a

(i)
L ] − [b

(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1])[ψ

(i+1)
L ]−T

= �sgn
(i+1)
L  (7.5.35d)

The factor matrix [ψ
(i+1)
L ] is set equal to

[ψ
(i+1)
L ] = [φ

(i+1)
L ]�|λ(i+1)

L |1/2 (7.5.36)

where the eigenvectors [φ
(i+1)
L ] and the eigenvalues �λ(i+1)

L  are obtained from the
following eigen-decomposition:

[a
(i)
L ] − [b

(i)
L1][y

(i)
L1] − [y

(i)
L1][b

(i)
L1]

T + [y
(i)
L1][c

(i)
L ][y

(i)
L1] = [φ

(i+1)
L ]�λ(i+1)

L [φ(i+1)
L ]−1 (7.5.37)

�sgn
(i+1)
L  is the sign matrix of �λ(i+1)

L  of which diagonal entries are ±1.
The continued fraction solution at low frequency is evaluated by using Eqs.

(7.5.32) and (7.5.33) whereby the recursive coefficient matrices are initialized by Eq.
(7.5.28) and updated by Eq. (7.5.35). The doubly asymptotic continued fraction
solution is determined by combining the high-frequency continued fraction solution
in Eq. (7.5.1) with the low-frequency continued fraction solution in Eq. (7.5.21)
using [y(MH+1)(ω)] = [yL(ω)] (Eq. (7.5.17)). It is expressed as

[s∞(ω)] =[k∞] + (iω)[c∞] − [ψ(1)]([y
(1)
0 ] + (iω)[y

(1)
1 ] − [ψ(2)]([y

(2)
0 ] + (iω)[y

(2)
1 ] − . . .

− [ψ(MH)]−T ([y
(MH)
0 ] + (iω)[y

(MH)
1 ] − [ψ

(0)
L ]([y

(0)
L0 ] + (iω)[y

(0)
L1 ]

− (iω)2[ψ
(1)
L ]([y

(1)
L0 ] + (iω)[y

(1)
L1 ] − . . . − (iω)2[ψ

(ML)
L ]([y

(ML)
L0 ]

+ (iω)[y
(ML)
L1 ])−1[ψ

(ML)
L ]T . . . )−1[ψ

(1)
L ]T )−1[ψ

(0)
L ]T )−1[ψ(MH)]T

. . .)−1[ψ(2)]T )−1[ψ(1)]T (7.5.38)

Note that the residual term (iω)2[ψ
(ML+1)
L ][y

(ML+1)
L (ω)]−1[ψ

(ML+1)
L ]T at the low-frequency

limit is neglected.
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7.6 Doubly asymptotic open boundary condition

The procedure of constructing the high-order doubly asymptotic open boundary
condition described in this section is based on the one described in Chapter 3.
The vertical boundary (ξ = 0) is considered. With use of Eq. (7.4.11), Eq. (7.4.1)
mentioned previously in Section 7.4 can be transformed into Eq. (7.6.1),

{R̃} = [s∞(ω)]{Ũ} (7.6.1)

where

{R̃} = [Φ]T{R} (7.6.2a)

{Ũ} = [Φ]−1{U} (7.6.2b)

where {U} denotes {U(ξ = 0)}. Substituting Eq. (7.5.1a) into Eq. (7.6.1) leads to

{R̃} = [k∞] + (iω)[c∞]{Ũ} − [ψ(1)]{Ũ (1)} (7.6.3)

where the auxiliary variable {Ũ (1)} is defined as

{Ũ (1)} = [y(1)(ω)]−1[ψ(1)]T{Ũ} (7.6.4)

and then reformulated as

[ψ(1)]T{Ũ} = [y(1)(ω)]{Ũ (1)} (7.6.5)

which is the same form as Eq. (7.6.1). Similarly, an auxiliary variable is introduced
for each term of the continued fraction in Eq. (7.5.1b). This yields

[ψ(i+1)]T{Ũ (i)} = [y(i+1)(ω)]{Ũ (i+1)} (i = 0, 1, 2, ..., MH) (7.6.6)

where Eq. (7.6.5) is included as the i = 0 case with {Ũ (0)} = {Ũ}. Multiplying Eq.
(7.5.1b) by {Ũ (i)} and using the definition of auxiliary variables in Eq. (7.6.6) with
i − 1 and i result in

[ψ(i)]T{Ũ (i−1)} = [y
(i)
0 ]{Ũ (i)} + (iω)[y

(i)
1 ]{Ũ (i)} − [ψ(i+1)]{Ũ (i+1)} (i = 1, 2, ..., MH)

(7.6.7)
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The residual {Ũ (MH+1)} of an order MH high-frequency continued fraction solution
is expressed in Eq. (7.6.6) with i = MH as

[ψ(MH)]T{Ũ (MH)} = [y(MH+1)(ω)]{Ũ (MH+1)} (7.6.8)

[y(MH+1)(ω)] = [yL(ω)] (Eq. (7.5.17)) is expressed in Eq. (7.5.21a) as a low-frequency
continued fraction solution. Multiplying Eq. (7.5.21a) by {Ũ (MH+1)} and using Eqs.
(7.5.17) and (7.6.8) lead to

[ψ
(0)
L ]T{Ũ (MH)} = [y

(0)
L0 ]{Ũ (MH+1)} + (iω)[y

(0)
L1 ]{Ũ (MH+1)} − (iω)[ψ

(1)
L ]{Ũ (1)

L } (7.6.9)

where the auxiliary variable {Ũ (1)
L } is defined in

(iω)[ψ
(1)
L ]T{Ũ (MH+1)} = [y

(1)
L (ω)]{Ũ (1)

L } (7.6.10)

Again, an auxiliary variable is introduced for each term of the continued fraction in
Eq. (7.5.21b). This results in

(iω)[ψ
(i+1)
L ]T{Ũ (i)

L } = [y
(i+1)
L (ω)]{Ũ (i+1)

L } (i = 0, 1, 2, ..., ML) (7.6.11)

with {Ũ (0)
L } = {Ũ (MH+1)}. Multiplying Eq. (7.5.21b) by {Ũ (i)

L } and using the defi-
nition of auxiliary variables in Eq. (7.6.11) with i − 1 and i result in

(iω)[ψ
(i)
L ]T{Ũ (i−1)

L } =[y
(i)
L0]{Ũ (i)

L } + (iω)[y
(i)
L1]{Ũ (i)

L }
− (iω)[ψ

(i+1)
L ]{Ũ (i+1)

L } (i = 1, 2, ..., ML) (7.6.12)

For the low-frequency solution with i = ML, the approximation {Ũ (ML+1)
L } = 0 is

introduced. Substituting Eqs. (7.6.2a) and (7.6.2b) back into Eq. (7.6.1) results in

{R} = [Φ]−T [k∞][Φ]−1{U} + (iω)[Φ]−T [c∞][Φ]−1{U} − [Φ]−T [ψ(1)]{Ũ (1)} (7.6.13)

Assembling Eqs. (7.6.13), (7.6.7), (7.6.9) and (7.6.12) leads to a system of linear
equations,

([Kh] + (iω)[Ch]){Z} = {F} (7.6.14)

where {Z} contains the displacement amplitudes on the boundary ΓV and the aux-
iliary variables, {F} the amplitude of the excitation forces applied on the vertical
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boundary ΓV ,

{Z} = [{U}, {Ũ (1)}, ..., {Ũ (MH)}, {Ũ (0)
L }, {Ũ (1)

L }, ..., {Ũ (ML)
L }]T (7.6.15a)

{F} = [{R}, 0, ..., 0, 0, 0, ..., 0]T (7.6.15b)

[Kh] is the stiffness matrix and [Ch] the damping matrix

[Kh] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Φ]−T [k∞][Φ]−1 −[Φ]−T [ψ(1)]
−[ψ(1)]T [Φ]−1 [y(1)

0 ] −[ψ(2)]

−[ψ(2)]T
. . . . . .
. . . [y(MH)

0 ] −[ψ(0)
L ]

−[ψ(0)
L ]T [y(0)

L0 ] 0

0 [y(1)
L0 ]

. . .
. . . . . . 0

0 [y(ML)
L0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.6.16a)

[Ch] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Φ]−T [c∞][Φ]−1 0
0 [y(1)

1 ] 0

0
. . . . . .
. . . [y(MH)

1 ] 0
0 [y(0)

L1 ] −[ψ(1)
L ]

−[ψ(1)
L ]T [y(1)

L1 ]
. . .

. . . . . . −[ψ(ML)
L ]

−[ψ(ML)
L ]T [y(ML)

L1 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.6.16b)

Both matrices are banded, symmetric and independent of time.
Equation (7.6.14) represents the high-order doubly asymptotic open boundary

condition in the frequency domain. It is expressed in the time domain as a system
of first-order ordinary differential equations,

[Kh]{z(t)} + [Ch]{ż(t)} = {f(t)} (7.6.17)

with

{z(t)} = [{u(t)}, {ũ(1)(t)}, ..., {ũ(MH)(t)}, {ũ(0)
L }, {ũ(1)

L (t)}, ..., {ũ(ML)
L (t)}]T

(7.6.18a)

{f(t)} = [{r(t)}, 0, ..., 0, 0, 0, ..., 0]T (7.6.18b)
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Equation (7.6.17) represents the high-order doubly asymptotic open condition. It
is temporally local. When the low-frequency terms are neglected, it becomes a
high-order singly asymptotic boundary condition.

7.7 Numerical examples

In this section, a homogeneous semi-infinite with a constant depth in Fig. 7.7.1(a)
is analyzed in the frequency and time domains. The ratio of G/ρ = 1 and ν = 0.25

are used in the analysis, and the plane strain condition is considered.
When evaluating the accuracy of the continued fraction solutions, the equivalent

dynamic coefficient expressed in Eq. (A.3.1) in Appendix A is computed. Two
spatial motion patterns are used for the in-plane case: u−spatial motion (using only
horizontal displacements) and v−spatial motion (using only vertical displacements).
The equivalent dynamic stiffness coefficients are normalized by the shear modulus
G and plotted with respect to the dimensionless frequency a0, which is defined as

a0 =
ωh

cs

(7.7.1)

The solution in Eq. (7.4.14) serves as the reference solution.
In Section 7.7.1, the doubly asymptotic continued fraction solution with use of

factor matrices (i.e. the improved procedure) is addressed and compared with the
unimproved one and the improved singly asymptotic solution to illustrate the ro-
bustness of the improved procedure. In Sections 7.7.2, 7.7.3 and 7.7.4, the responses
of the semi-infinite layer to surface tractions applied on the vertical boundary ΓV

are computed. Several directions of the surface tractions and time history are con-
sidered.

The Newmark’s method with γ = 0.5 and β = 0.25 (average acceleration scheme)
is adopted to integrate Eq. (7.6.17) (see Section A.2 in Appendix A). An extended
finite element mesh is analyzed by using ABAQUS, a commercial finite element
package, to provide a reference solution to verify the high-order singly and doubly
asymptotic open boundaries. Eight-node isoparametric quadrilateral element (Q8)
is selected for the extended mesh method.

Based on the highest frequency of interest ωh, the wave period T = 2π/ωh and
the minimum wavelength λw = csT of each sublayer are calculated. The SBFEM
and FEM meshes are divided in such a way that 1 wavelength is represented by at
lease 9 nodes. The size of the time step Δt is chosen as 1/8 of the shortest period.
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Figure 7.7.1: Semi-infinite layer: (a) geometry, (b) SBFE mesh and (c) FE mesh

7.7.1 Illustration of robustness of doubly asymptotic open

boundary for dynamic stiffness

The present open boundary based on the SBFEM is formulated directly on the
the vertical boundary ΓV of the layer. In the following sections, the boundary is
discretized with 8 two-node elements in the SBFEM as shown in Fig. 7.7.1(b).

As mentioned in Section 7.5, the factor matrices are introduced to the doubly
asymptotic continued fraction solution to improve the numerical stability of the
solution. In case of vector wave propagation, the factor matrices are indeed necessary
since the numerical stability of the solution deteriorates when the continued fraction
order increases. As shown in Figs. 7.7.2 and 7.7.3 for the case of not using the
factor matrices, the the order MH = ML = 4 doubly asymptotic continued fraction
solution agrees well with the reference solution, but when the order increases to
MH = ML = 8, an error appears as the real and imaginary parts oscillate throughout
the whole range of a0.
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Figure 7.7.2: Equivalent dynamic stiffness coefficient of semi-infinite layer by doubly
asymptotic continued fraction solution without improved numerical
stability (using u-spatial motion): (a) real part and (b) imaginary
part
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Figure 7.7.3: Equivalent dynamic stiffness coefficient of semi-infinite layer by doubly
asymptotic continued fraction solution without improved numerical
stability (using v-spatial motion): (a) real part, and (b) imaginary
part

When the factor matrices are introduced, the results of the solution using the
orders MH = ML = 4 and MH = ML = 8 are shown in Figs. 7.7.4 and 7.7.5.
It can be seen that the real and imaginary parts of the results obtained from the
order MH = ML = 4 do not exhibit any oscillations and correspond to those of the
reference solution. In addition, the accuracy of the results increases when the order
is increased to MH = ML = 8 as the real and imaginary parts converge to those
of the reference solution. With use of the factor matrices, the doubly asymptotic
solution can model evanescent waves the below cut-off frequencies accurately.

(a)

-0.2

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

R
EA

L
(S

(a
0)

)/
G

DIMENSIONLESS FREQUENCY a0 = ωh/(cs)

MH = ML = 8
MH = ML = 4
REFERENCE

244



(b)

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6
IM

A
G

(S
(a

0)
)/

G

DIMENSIONLESS FREQUENCY a0 = ωh/(cs)

MH = ML = 8
MH = ML = 4
REFERENCE

Figure 7.7.4: Equivalent dynamic stiffness coefficient of semi-infinite layer by doubly
asymptotic continued fraction solution with improved numerical sta-
bility (using u-spatial motion): (a) real part and (b) imaginary part
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Figure 7.7.5: Equivalent dynamic stiffness coefficient of semi-infinite layer by doubly
asymptotic continued fraction solution with improved numerical sta-
bility (using v-spatial motion): (a) real part and (b) imaginary part
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For the singly asymptotic solution with the same numbers of terms, its results are
plotted in Figs. 7.7.6 and 7.7.5. The real parts of the result obtained from the order
MH = 9 are always zero while the imaginary parts exhibit discontinuous points.
This defect of the singly asymptotic solution is similar to the case of scalar wave
propagation in semi-infinite layers i.e. it cannot model evanescent waves the below
cut-off frequencies. The accuracy of the solution, however, deteriorates when the
order is increased to MH = 17 as the oscillations appear in the real and imaginary
parts. This is because the factor matrices of the high-frequency limit are not enough
to improve the numerical stability of the solution.
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Figure 7.7.6: Equivalent dynamic stiffness coefficient of semi-infinite layer by singly
asymptotic continued fraction solution with improved numerical sta-
bility (using u-spatial motion): (a) real part and (b) imaginary part
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Figure 7.7.7: Equivalent dynamic stiffness coefficient of semi-infinite layer by singly
asymptotic continued fraction solution with improved numerical sta-
bility (using v-spatial motion): (a) real part and (b) imaginary part

7.7.2 Semi-infinite layer subjected to horizontal surface trac-

tion

In this example, the transient response of the semi-infinite layer to a uniformly dis-
tributed surface traction p(t) on the vertical boundary ΓV in the horizontal direction
as illustrated in Fig. 7.7.8 is evaluated. The time-dependence of the surface traction
p(t) is prescribed as a triangular function as plotted in Fig. 7.7.9(a) with respect to
the dimensionless time t̄ = tcs/h. The maximum surface traction is denoted as PT .
The Fourier transform of the function is also plotted in Fig. 7.7.9(b) with respect to
the dimensionless frequency a0. The highest dimensionless frequency ah of interest
is observed as 6.
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Figure 7.7.8: Semi-infinite layer subjected to horizontal surface traction
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Figure 7.7.9: Triangular function: (a) time history and (b) Fourier transform

To obtain a reference solution, an extended finite element mesh as shown in Fig.
7.7.1(c) is analyzed. The number of nodes on the vertical boundary ΓV is the same
as that of the SBFEM. The length of the extended mesh is chosen as 50h so that
responses are not affected by the waves reflected at the truncated boundary. The
totals number of nodes in the extended finite element mesh is 2, 809 while the scaled
boundary finite element mesh has only 9 nodes. The dimensionless time step Δt̄ of
0.1 is chosen for both the extended mesh and the open boundaries.
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The displacement responses at Point A located at the top of the vertical bound-
ary ΓV (Fig. 7.7.1(a)) is chosen to evaluate the accuracy of the singly and doubly
asymptotic open boundaries. The accuracy of the singly asymptotic open bound-
ary is investigated first with the orders MH = 9 and MH = 17. The responses of
horizontal and vertical displacements of Point A are normalized by PT /G and plot-
ted with respect to the dimensionless time t̄ as shown in Fig. 7.7.10. At the order
MH = 9, the results are accurate at the early time (0 < t̄ < 1.5). When t̄ > 1.5,
the results start to deviate from those of the extended mesh method. In case of the
order MH = 17, its results are accurate only within the smaller range of 0 < t̄ < 0.5.
Even worse, its results deteriorate earlier than those of the order MH = 9 do. This
indicates that the singly asymptotic open boundary is unable to transmit evanescent
waves below cut-off frequencies. Thus it is impossible to use the singly asymptotic
open boundary for a long-time analysis since the accuracy of the results deteriorates
with increasing orders.
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Figure 7.7.10: Displacement responses of Point A to horizontal surface traction by
singly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

The accuracy of the doubly asymptotic open boundary is then investigated with
the orders MH = ML = 4 and MH = ML = 8. The results of displacement responses
of Point A are plotted in Fig. 7.7.11. At the order MH = ML = 4, the horizontal
and the vertical displacements correspond to those of the extended mesh at the
early time, attenuating continuously with time At the order MH = ML = 8, the
accuracy of the results at the late time increases as the results agree well with those
of the extended mesh method. By comparing Figs. 7.7.10 and 7.7.11, the doubly
asymptotic open boundary is much more accurate than the singly asymptotic open
boundary with the same number of terms. Thus it is more suitable for a long-time
analysis of the horizontal surface traction.
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Figure 7.7.11: Displacement responses of Point A to horizontal surface traction by
doubly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

7.7.3 Semi-infinite layer subjected to vertical surface traction

The same uniform surface traction p(t) as in Section 7.7.2 is applied to the vertical
boundary ΓV but in the vertical direction as illustrated in Fig. 7.7.12.

A

+∞h p(t)

Figure 7.7.12: Semi-infinite layer subjected to vertical surface traction

A reference solution is obtained with the same extended mesh as in Section 7.7.2
(Fig. 7.7.1(c)).

The displacement responses at Point A by using the order MH = 9 and MH = 17

singly asymptotic open boundary are plotted in Fig. 7.7.13. At the very early time
(0 < t̄ < 1.5 for MH = 9 and 0 < t̄ < 0.5 for MH = 17), the results agree well with
those of the extended mesh method. However, After t̄ > 1.5 for MH = 9 and t̄ > 0.5

for MH = 17, the results are inaccurate. Similarly, the results obtained from the
order MH = 17 diverge before those of the order MH = 9 do. This also indicates
that the singly asymptotic open boundary is inappropriate for a long-time analysis
since the results always diverge at the early time.
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Figure 7.7.13: Displacement responses of Point A to vertical surface traction by
singly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

In contrast, the doubly asymptotic open boundary with the same numbers of
terms yields the excellent results. The results obtained from the orders MH = ML =

4 and MH = ML = 8 are plotted in Fig. 7.7.14. All the results correspond to those
of the extended mesh method, and no “fictitious reflection” is observed throughout
the entire duration. The accuracy of the results at the late time increases when the
order is increased to MH = ML = 8. Thus the doubly asymptotic open boundary is
more suitable for a long-time analysis of the vertical surface traction.
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Figure 7.7.14: Displacement responses of Point A to vertical surface traction by
doubly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

7.7.4 Semi-infinite layer subjected to inclined surface trac-

tion

In the last example, the semi-infinite layer is subjected to uniformly distributed
surface traction τ0(t) in the inclined direction as shown in Fig. 7.7.15.
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Figure 7.7.15: Semi-infinite layer subjected to inclined surface traction

The time history of τ0(t) is prescribed as a function of Ricker wavelet with ts = 9

and t0 = 1.5 (see Eqs. (A.1.1) and (A.1.2) in Appendix A). The time history is
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plotted in Fig. 7.7.16(a) of which Fourier transform is shown in Fig. 7.7.16(b). The
highest dimensionless frequency of interest ah is observed as 6.
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Figure 7.7.16: Ricker wavelet function: (a) time history and (b) Fourier transform

Again, a reference solution is obtained from the same extended mesh as in Section
7.7.2 (Fig. 7.7.1(c)).

The singly asymptotic open boundary is evaluated first. The displace responses
Point A obtained from the orders MH = 9 and MH = 17 are plotted in Fig. 7.7.17.
Again, the results are only accurate at the early time. At the order MH = 9, the
results are accurate until to t̄ = 6. After t̄ > 6, the differences between the results
and those of the extended mesh method are noticed. Then the results suddenly
diverge at about t̄ = 9. At the order MH = 17, the results are accurate until to
t̄ < 1.5 and then suddenly diverge before those of the order MH = 9 do.
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Figure 7.7.17: Displacement responses of Point A to to inclined surface traction by
singly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

The doubly asymptotic open boundary with the same numbers of terms is ap-
plied. The results are much more accurate as plotted in Fig. 7.7.18. The result
obtained from using the order MH = ML = 4 does not exhibit any “fictitious re-
flection” throughout the entire duration. Moreover, the accuracy of the result at
the late time increases when the order is increased to MH = ML = 8. The result
is almost the same as that of the extended mesh method, and no “fictitious reflec-
tion” is observed. Thus the doubly asymptotic open boundary is more suitable for
a long-time analysis of the inclined surface traction.
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Figure 7.7.18: Displacement responses of Point A to inclined surface traction by
doubly asymptotic open boundary: (a) horizontal displacement and
(b) vertical displacement

7.8 Conclusions

A matrix solution for the scaled boundary finite element equation in dynamic stiff-
ness is obtained for the modeling of vector wave propagation in a semi-infinite layer.
The solution is expressed as high-order doubly asymptotic continued fraction in
the frequency domain. It is formulated in the time domain as a high-order open
boundary condition. From the analysis results obtained in the frequency and time
domains, it can be concluded as follows:

1. In the frequency domain, due to the existence of the cut-off frequencies of the
semi-infinite layer, the singly asymptotic continued fraction solution can only
model propagating waves at high frequencies (i.e. above the cut-off frequen-
cies), but cannot model evanescent waves at low frequencies (i.e. below the
cut-off frequencies). The accuracy of the solution does not always increase
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with increasing orders. In case of the doubly asymptotic continued fraction
solution, it is more accurate and converges to the reference solution rapidly as
the orders increase. It can model not only the propagating waves at the high
frequencies, but also model the evanescent waves at low frequencies.

2. In the time domain, the accuracy of the doubly asymptotic open boundary
rapidly increases with increasing orders, and is much higher than that of the
singly asymptotic open boundary in comparison with the same number of
terms. The displacement responses at the early time and the late time can
be simulated accurately by the doubly asymptotic open boundary. On the
contrary, the displacement responses obtained from the singly asymptotic open
boundary often diverge at the early time, and the accuracy of the displacement
responses does not always increase with increasing orders.

3. The high-order doubly asymptotic open boundary is indispensable to long-time
analysis of vector wave propagation in homogeneous semi-infinite layers. The
open boundary is temporally local. It is expressed as a system of first-order
ordinary differential equation in time. The two time-independent coefficient
matrices, the stiffness matrix [Kh] and the damping matrix [Ch] are banded
and symmetric. Thus well-established time-stepping schemes in structural
dynamics are directly applicable.
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Chapter 8

Conclusions

8.1 Summary

The main objective of the research is to develop a reliable and efficient open bound-
aries for wave propagation problems in unbounded domains. The scaled boundary
finite element method (SBFEM), a semi-analytical approach based on the finite el-
ement formulation, was adopted in the research as the theoretical framework. The
advantages of the SBFEM is that no fundamental solution is required and the ra-
diation condition at infinity is satisfied rigorously. Only the boundary of the com-
putational domain is discretized, thereby reducing the spatial dimension by one. In
addition, it can be coupled seamlessly with standard finite elements.

This research focuses on semi-infinite layered systems, which are frequently en-
countered in foundation engineering. This system is the most challenging one in
the time-domain analysis of wave propagation due to the existence of the so-called
cut-off frequency below which evanescent waves are present. This research is also
extended to circular cavities embedded in full-planes. The proposed open boundary
was a further development of the transmitting boundary proposed in Bazyar and
Song (2008) by extending the singly asymptotic formulation to a doubly asymptotic
formulation. This advance leads to significantly gain in accuracy and stability.

In Chapter 1, the introduction of the thesis was presented. The statement of
problem was described. The background and motivation were explained. The ob-
jectives were presented and then followed by the outline of the research.

In Chapter 2, a detailed literature of existing approaches for wave propagation
problems in unbounded domains was presented. The approaches were classified
into two groups. The approaches in the first group are spatially and temporally
global e.g. the boundary element method (BEM), the thin-layer method (TLM),
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the SBFEM, exact non-reflecting boundaries, and also temporally local exact non-
reflecting boundaries. The approaches in the second group are local procedures in-
troducing approximations e.g. low-order absorbing boundary conditions (low-order
ABCs), high-order ABCs, local high-order ABCs, the doubly asymptotic approxi-
mations (DAAs), infinite elements, and absorbing layers. The advantages and dis-
advantages of the approaches in such two groups were identified and reviewed.

In Chapter 3, the high-order doubly asymptotic open boundaries for the modal
equations of scalar waves in a semi-infinite layer with constant depth and a circular
cavity embedded in a full-plane were constructed. In the formulation, the method of
separation of variables was applied to decompose a two-dimensional wave equation
into a series of modal wave equations in one dimension. By combining these modal
wave equations with the force-displacement relationship, the equations of modal
dynamic stiffness coefficients were obtained in the frequency domain. The doubly
asymptotic continued fraction solution of the modal dynamic stiffness coefficients
was determined recursively. This doubly asymptotic continued fraction solution
approaches to the exact solution at both high- and low-frequency limits. It was
observed that the solution converged to the exact solution over the whole frequency
range as the order of continued fractions increases. It was also demonstrated that
many of existing transmitting boundaries could be regarded as singly asymptotic
continued fraction solutions, which were special cases of the present doubly asymp-
totic solution. Numerical examples showed significant improvement in accuracy in
comparison with the singly asymptotic continued fraction solution, especially in
modeling evanescent waves below cut-off frequencies. By employing the continued
fraction solution of the dynamic stiffness coefficients and introducing auxiliary vari-
ables, the force-displacement relationship in the frequency domain was expressed
as a system of linear equations. It was written as a system of first-order ordinary
differential equations representing a high-order doubly asymptotic open boundary
condition in the time domain. Numerical examples of direct time-domain analysis
demonstrated that the doubly asymptotic open boundaries yielded accurate results
and exhibited no “fictitious reflections” at the late time while the singly asymptotic
open boundaries were less accurate and always exhibited “fictitious reflections” at
the late time.

In Chapter 4, the time-domain analysis of gravity dam-reservoir interaction
was performed using the high-order doubly asymptotic open boundary developed
in Chapter 3. The water in the reservoir was treated as acoustic fluid satisfying
the scalar wave equation. The Dirichlet and the Neumann boundary conditions
were applied on the top surface and at the base, respectively. By substituting the
acceleration-pressure relationship of acoustic fluid (derived in the scaled boundary
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coordinates) into the Galerkin’s weighted residual method, the scaled boundary
finite element (SBFE) equation in pressure with the coefficient matrices was formu-
lated. The eigenvectors obtained from the eigen-decomposition of two coefficient
matrices [E0] and [E2] of the SBFEM were used for the SBFE equation in pres-
sure. This led to a system of decoupled equations for individual modes which was a
function of the dimensionless frequency. Since the acceleration-pressure relationship
of acoustic fluid was equivalent to the stress-strain relationship in Chapter 3, the
modal dynamic stiffness coefficients were equivalently defined in the relationship be-
tween the force-pressure relationship. Therefore, the doubly asymptotic continued
fraction solution for the modal dynamic stiffness coefficients could be determined by
following the derivation in Chapter 3 as mentioned earlier. The doubly asymptotic
open boundary condition in the time domain were also formulated by following the
derivation in Chapter 3, but using the force-pressure relationship and including the
continued fraction solutions of all the modes. As numerical examples, a rigid dam
and a flexible dam were investigated. For the rigid dam, the doubly asymptotic open
boundary was applied directly on the upstream face of the dam. The hydrodynamic
pressure obtained from the doubly asymptotic open boundary were more accurate
and no “fictitious reflections” occurred compared to those obtained from the singly
asymptotic open boundary. The measured computer time of the doubly asymptotic
open boundary increased linearly with the order of the open boundary and the num-
bers of time steps. For the flexible dam, the dam body and the irregular near-field
of the reservoir were modeled by finite elements using ABAQUS, a commercial finite
element package. The open boundary was applied on the truncated boundary to
represent the regular far field of the reservoir. In the numerical implementation, the
finite element equations of the near field and the open boundary conditions of the far
field were solved by a sequential staggered implicit-implicit partitioned procedure.
Based on the restart function in ABAQUS, a two-way data-exchange sequential cou-
pling scheme was established. The results of the hydrodynamic pressure at the dam
heel and the displacement responses at the dam crest obtained from the doubly
asymptotic open boundary were accurate and stable. The accuracy of the results
increased rapidly with increasing orders.

In Chapter 5, the high-order doubly asymptotic open boundary for scalar wave
propagation in a full-plane with a circular cavity was developed by extending the
SBFEM. The full-plane was assumed to be homogeneous and the circular bound-
ary was subjected to time-dependent out-of-plane shear stresses. By employing
either the virtual work method or the Galerkin’s weighted residual method with the
stress-strain relationship in an out-of-plane problem (derived in the scaled boundary
coordinates), the scaled boundary finite element (SBFE) equation in displacement
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was formulated with the coefficient matrices [E0] and [E2]. The scaled boundary fi-
nite element equation was decomposed by the eigenvectors of [E0] and [E2]. This led
to a series of equations for individual modes which were similar to the modal equa-
tion of scalar waves obtained by the method of separation of variables in Chapter
3. The modal equations of dynamic stiffness coefficients were, therefore, determined
by following the derivation in Chapter 3. However, the doubly asymptotic contin-
ued fraction solution for modal dynamic stiffness coefficients proposed in Chapter
3 could break down at certain modal eigenvalues. This problem occurred when the
denominators of the coefficients of the continued fractions became zero. Hence, in
Chapter 5, the factor coefficients were introduced to the formulation of the con-
tinued fraction to handle such a problem. All denominators of the coefficients in
the improved formulation turned into sign functions which were equal to ±1. The
high-order open boundary condition in the time domain was formulated in the same
way as that in Chapter 4. In the frequency-domain analysis, the doubly asymptotic
and the singly asymptotic continued fraction solutions were compared. The results
indicated that the rate of convergence of the doubly asymptotic continued fraction
solution was much higher, especially at high modes. In the time-domain analysis,
the doubly asymptotic open boundary yielded more accurate results and faster con-
vergence than the singly asymptotic open boundaries, especially in the area where
the pressure was applied.

In Chapter 6, the high-order doubly asymptotic open boundary for scalar wave
propagation in semi-infinite layered systems was constructed by extending the SBFEM.
The material constants were assumed to be constant throughout each sublayer and
could be different from those of the other sublayers. The Neumann and the Dirichlet
boundary conditions were applied on the top surface and at the base, respectively.
The translated boundary coordinate system was used in the SBFEM. By using the
stress-strain relationship of an out-of-plane problem (derived in the scaled boundary
coordinates) and the virtual work method, the SBFE equation in displacement was
formulated. The SBFE equation in displacement was then used for deriving the
SBFE equation in dynamic stiffness. The SBFE equation for this case cannot be de-
coupled. A continued fraction solution was sought in matrix form. To determine the
coefficient and factor matrices of the doubly asymptotic continued fraction solution,
the continued fraction was substituted in the SBFE equation in dynamic stiffness,
starting from the high-frequency limit and then followed by the low-frequency one.
The recursive procedures at the high- and low-frequency limits were performed, de-
pending on the orders of continued fraction. The factor matrices were set equal to
the lower triangular matrices obtained from LDLT decomposition. By following the
derivation in Chapter 3, the the high-order open boundary condition in the time
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domain was also expressed as a system of first-order ordinary differential equations.
In the frequency-domain analysis, the results of the singly and doubly asymptotic
continued fraction solutions were plotted as equivalent dynamic stiffness coefficients
for convenience in comparison. The results indicated that the doubly asymptotic
continued fraction solution was able to model evanescent waves below the cut-off
frequencies in the layered systems while the singly asymptotic continued fraction
solution was not. In the time-domain analysis, the singly and doubly asymptotic
open boundaries were applied on the vertical boundaries of the layered systems.
The open boundaries were compared with each other. The accuracy of the results
obtained from the singly asymptotic open boundary could be improved with the
increasing orders but in a very low rate. Moreover, the “fictitious reflections” always
occurred. In contrast, the doubly asymptotic open boundary yielded more accurate
results and the accuracy rapidly increased with the increasing orders. No “fictitious
reflections” were observed.

In Chapter 7, the high-order doubly asymptotic open boundary for vector wave
propagation in a homogeneous semi-infinite layer was constructed by extending the
SBFEM. The Neumann and the Dirichlet boundary conditions were applied on the
top surface and at the base, respectively. The translated boundary coordinate sys-
tem was used in the SBFEM. By using the stress-strain relationship of an in-plane
problem (derived in the scaled boundary coordinates) and the virtual work princi-
ple, the scaled boundary finite element (SBFE) equation in displacement was for-
mulated. The SBFE equation in displacement was then used for deriving the SBFE
equation in dynamic stiffness. The coefficient and factor matrices of the doubly
asymptotic continued fraction solution was determined recursively. By following the
derivation in Chapter 3, the the high-order open boundary condition in the time
domain was expressed as a system of first-order ordinary differential equations. In
the frequency-domain analysis, the results indicated that the doubly asymptotic
continued fraction solution was able to model evanescent waves below the cut-off
frequencies in the layer while the singly asymptotic continued fraction solution was
not. In the time-domain analysis, the singly and doubly asymptotic open boundaries
were applied on the vertical boundary of the semi-infinite layer. The accuracy of
the singly asymptotic open boundary was very low accurate even at the early times.
In contrast, the doubly asymptotic open boundary yielded accurate results without
any “fictitious reflections” and the accuracy rapidly improved as the order increases.
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8.2 Recommendations for future research

• In Chapter 5, the high-order doubly asymptotic open boundary was con-
structed for the scalar wave propagation in a full-plane with a circular cavity.
It is of interest to extend the open boundary to acoustic wave propagation for
underwater shock analysis. And also the coupling scheme with standard finite
elements should be developed for the open boundary.

• In Chapter 5, only scalar wave propagation in a full-plane with a circular cavity
was considered. The next study should extend to vector wave propagation
focusing on a homogeneous full-plane first and then on a non-homogeneous
full-plane if possible.

• In Chapter 6, the semi-infinite layered systems were considered for scalar
waves. The next study should focus on non-homogeneous semi-infinite lay-
ers with the shear modulus varying as a power function of depth.

• In Chapter 7, the high-order doubly asymptotic open boundary for vector
wave propagation in a semi-infinite layer with a constant depth was proposed.
However, only the homogeneous layer was considered. In the future research,
semi-infinite layered systems and non-homogeneous semi-infinite layer with the
modulus of elasticity varying as a power function of depth should be consid-
ered.

• The geometry of the high-order doubly asymptotic open boundaries developed
in this research are restricted to a vertical line for a semi-infinite layer with a
constant depth and a circle for a circular cavity embedded in a full-plane. In
the future research, the high-order doubly asymptotic open boundary should
be developed for arbitrary geometry.

• Stability of the high-order doubly asymptotic open boundary in the time do-
main should be extensively studied. This includes the cases of scalar and
vector wave propagation in a semi-infinite layer with a constant depth, a cir-
cular cavity embedded in a full-plane and also arbitrary geometry.

• In the time-domain analysis in Chapter 4 in case of the flexible dam the
rigid foundation was only considered, the high-order doubly asymptotic open
boundary was applied only on the truncated boundary of the near-field water.
However, in reality, the foundation is not all rigid and the material constants
vary with depth. Hence, it is of great interest if the flexible foundation is taken
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into account. Thus the high-order open boundary should also be applied on
the truncated boundary of the flexible foundation.
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Appendix A

Summary of Equations

A.1 Ricker wavelet function

The Ricker wavelet function is given as

τ0(t) = AR

(
1 − 2

(
t − ts

t0

)2
)

exp

(
−
(

t − ts
t0

)2
)

(A.1.1)

where ts is the time when the wavelet reaches its maximum, 2/t0 is the dominant
frequency ωp, and AR is the amplitude of the wavelet. The Fourier transform of the
Ricker wavelet is expressed as

R0(ω) = 0.5
√

πARt0(ωt0)
2exp(−0.25(ωt0)

2) (A.1.2)

where ω denotes the excitation frequency.

A.2 Newmark’s method

The Newmark’s method can be employed by following these steps (Huge and Be-
lytschko, 1983): first, determine the predictors from

{ũ}n+1 = {u}n + (Δt){u̇}n + (0.5 − β)(Δt)2{ü}n (A.2.1a)

{ ˙̃u}n+1 = {u̇}n + (1 − γ)(Δt){ü}n (A.2.1b)
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where β and γ are chosen parameters and Δt is time step. Next, solve for {üt+Δt}
from

{ü}n+1 =([M ] + γ(Δt)[C] + β(Δt)2[K])−1({Fn+1} − [C]{ ˙̃u}n+1 − [K]{ũ}n+1)

(A.2.2)

where [K] is the stiffness matrix, [C] is the damping matrix and [M ] is the mass
matrix. Then, determine the correctors from

{u}n+1 = {ũ}n+1 + β(Δt)2{ü}n+1 (A.2.3a)

{u̇}n+1 = { ˙̃u}n+1 + γ(Δt){ü}n+1 (A.2.3b)

A.3 Equivalent dynamic stiffness coefficient

The equivalent dynamic stiffness coefficient is expressed as

S(ω) = {ϕ}T [S∞(ω)]{ϕ} (A.3.1)

where [S∞(ω)] is the dynamic stiffness matrix, and {ϕ} denotes the linear spatial
motion pattern of the nodes on the discretized boundary which does not vary with
time (Wolf and Song, 1996).
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